
CS159 Lecture 1: Markov Decision Processes

Ugo Rosolia

Caltech

Spring 2021

Table of Contents

Markov Decision Processes
Problem Formulation
Control Policies and Value Functions

Solution Strategies
Value Iteration
Policy Iteration
Linear Programming

Approximate Dynamic Programming
Summary Policy and Value Iteration
Approximate Policy Iteration

Table of Contents

Markov Decision Processes
Problem Formulation
Control Policies and Value Functions

Solution Strategies
Value Iteration
Policy Iteration
Linear Programming

Approximate Dynamic Programming
Summary Policy and Value Iteration
Approximate Policy Iteration

Markov Decision Process

A Markov decision process (MDP) is a tuple (S,A,Ts , c), where
I S = {1, . . . , |S|} is a set of states;
I A = {1, . . . , |A|} is a set of actions;
I The function Ts : S ×A× S → [0, 1] describes the probability

of transitioning to a state s ′ given the action a and the
system’s state s,

Ts(s, a, s ′) :=P(sk+1 =s ′|sk =s, ak =a) = p(s ′|s, a);

I The cost function c : S ×A → R assigns an instantaneous
cost to each state-action pairs;

Markov Decision Process

Deterministic And Random Policies

Deterministic Policies
Define the set of deterministic policies Πd . A deterministic policy
πd ∈ Πd maps states to actions, i.e.,

ak = πd(sk).

Random Policies
Define the set of random policies Πr . A random policy πr ∈ Πr

maps states to probability distributions, i.e.,

ak ∼ πr (sk).

Deterministic And Random Policies

Deterministic Policies
Define the set of deterministic policies Πd . A deterministic policy
πd ∈ Πd maps states to actions, i.e.,

ak = πd(sk).

Random Policies
Define the set of random policies Πr . A random policy πr ∈ Πr

maps states to probability distributions, i.e.,

ak ∼ πr (sk).

Markov Decision Process
A Markov decision process (MDP) is a tuple (S,A,Ts ,R), where
I S = {1, . . . , |S|} is a set of states;
I A = {1, . . . , |A|} is a set of actions;
I The function Ts : S ×A× S → [0, 1] describes the probability

of transitioning to a state s ′ given the action a and the
system’s state s,

Ts(s, a, s ′) :=P(sk+1 =s ′|sk =s, ak =a) = p(s ′|s, a);

I The cost function R : S ×A → R assigns an instantaneous
cost to each state-actions pairs;

Goal
Find a policy π∗ = [π∗0, π

∗
1, . . .] defined as

π∗ = arg min
π

E

[∞∑
t=0

λtc(st , at)|π

]

Markov Decision Process

Goal
Find a policy π∗ = [π∗0, π

∗
1, . . .] defined as

π∗ = arg min
π

E

[∞∑
t=0

λtc(st , at)|π

]

I The discount factor λ ∈ (0, 1).
I The action at = πt(st) or at ∼ πt(st).
I E[

∑∞
t=0 λ

tc(st , at)|π] denotes the expectation under the
policy π.

Markov Decision Process – Assumptions

Assumption 1. (Stationary costs and transition probabilities)
The cost function c(s, a) and the transition probabilities P(s ′|s, a)
do not vary.

Assumption 2. (Bounded costs) The cost function
|c(s, a)| ≤ M <∞ for all a ∈ A and s ∈ S.

Assumption 3. (Discrete State and Action Spaces) The state
space S and the action space A are finite and discrete.

Assumption 4. (Discounting) The future costs are discounted by
a factor λ and 0 ≤ λ < 1.

Table of Contents

Markov Decision Processes
Problem Formulation
Control Policies and Value Functions

Solution Strategies
Value Iteration
Policy Iteration
Linear Programming

Approximate Dynamic Programming
Summary Policy and Value Iteration
Approximate Policy Iteration

Deterministic And Random Policies

Deterministic Policies
Define the set of deterministic policies Πd . A deterministic policy
πd ∈ Πd maps states to actions, i.e.,

ak = πd(sk).

Random Policies
Define the set of random policies Πr . A random policy πr ∈ Πr

maps states to probability distributions, i.e.,

ak ∼ πr (sk).

Deterministic Vs Random Policies

I For unconstrained problems we have that

min
π∈Πd

E

[∞∑
t=0

λtc(st , at)|π

]
= min

π∈Πr
E

[∞∑
t=0

λtc(st , at)|π

]

There is no performance gain in optimizing over the larger set
of random policies.

I For constrained problems we have that

min
π∈Πd

E

[∞∑
t=0

λtc(st , at)|π

]

s.t. E

[∞∑
t=0

g(st , at)|π

]
≤ ε.
≥

min
π∈Πr

E

[∞∑
t=0

λtc(st , at)|π

]

s.t. E

[∞∑
t=0

g(st , at)|π

]
≤ ε.

A randomized policy perform better for constrained problems.

Deterministic Vs Random Policies

I For unconstrained problems we have that

min
π∈Πd

E

[∞∑
t=0

λtc(st , at)|π

]
= min

π∈Πr
E

[∞∑
t=0

λtc(st , at)|π

]

There is no performance gain in optimizing over the larger set
of random policies.

I For constrained problems we have that

min
π∈Πd

E

[∞∑
t=0

λtc(st , at)|π

]

s.t. E

[∞∑
t=0

g(st , at)|π

]
≤ ε.
≥

min
π∈Πr

E

[∞∑
t=0

λtc(st , at)|π

]

s.t. E

[∞∑
t=0

g(st , at)|π

]
≤ ε.

A randomized policy performs better for constrained problems.

Deterministic Vs Random Policies

I The action space A = {Action 1,Action 2}, state space
S = {1, 2, 3, 4, 5} and the state s = 5 is a sink state.

I The cost function c(s, a) = 0 for all s ∈ S \ {3}, a ∈ A and
c(3, a) = −1 for all a ∈ A.

I The constraint function g(s, a) = 0 for all s ∈ S \ {4}, a ∈ A
and g(4, a) = 1 for all a ∈ A.

I Pick ε < 0.1, then a deterministic policy must choose Action 1
from s = 1 to meet the constraint E

[∑H
t=0 g(st , at)|π

]
≤ ε.

Value Functions
Value Function
The value function vπ is a vector in R|S| where each entry vπ(s)
represents the cumulative cost of applying the policy π ∈ Πd from
the state s ∈ S , i.e.,

vπ(s) = E

[∞∑
t=0

λtc(st , at)|π, s

]
.

Consider a stationary policy π = [π, π, . . .] with π ∈ Πd . Then vπ
is the unique solution of

v = rπ + λPπv

where
I the vector rπ ∈ R|S| where rπ(s) = c(s, π(s))
I the matrix Pπ ∈ R|S|×|S| where Pπ(s, s ′) = p(s ′|s, π(s))
I the value function v = (I − λPπ)−1rπ =

∑∞
t=0 λ

tPt
πrπ

Value Function – The Parking Example

The set of states
S = {1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T}.

Value Function – The Parking Example

Two actions are available: {move forward, park}.

Let πm be a deterministic policy that selects the action
move forward, then Pπm is defined by the following table:

1f 1o 2f 2o . . . G T
p 1-p 1f
p 1-p 1o

. . .
...

1 6f
1 6o

1 G
1 T

where each entry Pπ(s, s ′) = p(s ′|s, π(s)) for s ∈ S, s ′ ∈ S and
S = {1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T}.

Value Function – The Parking Example

Two actions are available: {move forward, park}.

Let πp be a deterministic policy that selects the action park, then
Pπp is defined by the following table:

1f 1o 2f 2o . . . G T
1 1f

p 1-p 1o
. . .

...
1 6f

1 6o
1 G
1 T

where each entry Pπ(s, s ′) = p(s ′|s, π(s)) for s ∈ S, s ′ ∈ S and
S = {1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T}.

Value Function – The Parking Example

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T].
Value Function = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0].

Value Function – The Parking Example

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T].
Value Function = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0].

Markov Decision Process

Goal
Find a stationary policy π∗ = [π∗, π∗, . . .] defined as

π∗ = arg min
π

E

[∞∑
t=0

λtc(st , at)|π

]

Optimality Conditions

Given a value function which satisfies:

v∗(s) = arg min
a∈A

c(s, a) +
∑
s′∈S

λv∗(s ′)p(s ′|s, a).

Then, the optimal policy is:

π(s) = min
a∈A

c(s, a) +
∑
s′∈S

λv∗(s ′)p(s ′|s, a)

Markov Decision Process

Goal
Find a stationary policy π∗ = [π∗, π∗, . . .] defined as

π∗ = arg min
π

E

[∞∑
t=0

λtc(st , at)|π

]

Optimality Conditions

Given the optimal value function v∗ that satisfies the Bellman
recursion v∗ = Bv∗ defined as follows:

v∗(s) = min
a∈A

[c(s, a) +
∑
s′∈S

λv∗(s ′)p(s ′|s, a)], ∀s ∈ S.

Then, the optimal policy is:

π∗(s) = arg min
a∈A

[c(s, a) +
∑
s′∈S

λv∗(s ′)p(s ′|s, a)]

Table of Contents

Markov Decision Processes
Problem Formulation
Control Policies and Value Functions

Solution Strategies
Value Iteration
Policy Iteration
Linear Programming

Approximate Dynamic Programming
Summary Policy and Value Iteration
Approximate Policy Iteration

Value Iteration

Algorithm Steps:

1. Select v0 ∈ R|S|, set k = 0 and pick a tolerance ε ≥ 0

2. For each s ∈ S compute vk+1 ∈ R|S| where

vk+1(s) = min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)vk(s ′)]

3. If
||vk+1 − vk || ≥ ε(1− λ)

2λ
set k = k + 1 and go to step 2.

4. Define the control policy

πvi(s) = arg min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)vk+1(s ′)]

Value Iteration

Algorithm Steps:

1. Select v0 ∈ R|S|, set k = 0 and pick a tolerance ε ≥ 0
2. For each s ∈ S compute vk+1 ∈ R|S| where

vk+1(s) = min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)vk(s ′)]

3. If
||vk+1 − vk || ≥ ε(1− λ)

2λ
set k = k + 1 and go to step 2.

4. Define the control policy

πvi(s) = arg min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)vk+1(s ′)]

Value Iteration

Algorithm Steps:

1. Select v0 ∈ R|S|, set k = 0 and pick a tolerance ε ≥ 0
2. For each s ∈ S compute vk+1 ∈ R|S| where

vk+1(s) = min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)vk(s ′)]

3. If
||vk+1 − vk || ≥ ε(1− λ)

2λ
set k = k + 1 and go to step 2.

4. Define the control policy

πvi(s) = arg min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)vk+1(s ′)]

Value Iteration

Algorithm Steps:

1. Select v0 ∈ R|S|, set k = 0 and pick a tolerance ε ≥ 0
2. For each s ∈ S compute vk+1 ∈ R|S| where

vk+1(s) = min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)vk(s ′)]

3. If
||vk+1 − vk || ≥ ε(1− λ)

2λ
set k = k + 1 and go to step 2.

4. Define the control policy

πvi(s) = arg min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)vk+1(s ′)]

Value Iteration

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T].

Value Iteration

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T].

Value Iteration

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T].

Value Iteration

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T].

Value Iteration

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T].

Value Iteration

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T].

Value Iteration: Properties

Theorem
Let {vk} be a sequence defined by the Bellman recursion and
consider the stopping rule

||vk+1 − vk ||∞ < ε
(1− λ)

2λ
(1)

Then we have that
I vk converges in norm to v∗ and the convergence is linear with

rate λ.
I If (1) holds for a finite N, then (1) holds for k ≥ N.
I If (1) holds for a finite N, then ||vN+1 − v∗||∞ < ε/2 and πvi

is ε-optimal.

Variants to the Value Iteration with better convergence rate in
Chapter 6 of “Markov decision processes: discrete stochastic
dynamic programming” by M. Puterman. John Wiley & Sons, 2014.

Value Iteration: Convergence Proof
Define the Bellman backup operator B : R|S| → R|S|

Bv(s) = min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)v(s ′)]

which is a contraction as

|Bv0(s)− Bv1(s)| = |min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)v0(s ′)]

−min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)v1(s ′)]|

≤ max
a∈A

λ|
∑
s′∈S

p(s ′|s, a)v0(s ′)−
∑
s′∈S

p(s ′|s, a)v1(s ′)|

= max
a∈A

λ
∑
s′∈S

p(s ′|s, a)|v0(s ′)− v1(s ′)|

≤ λmax
s′∈S
|v0(s ′)− v1(s ′)|.

Then, by the fixed-point theorem, we have that Bv∗ = v∗ and the
sequence vk+1 = Bvk = Bk+1v0 converges to v∗.

Value Iteration: Suboptimality Proof

We notice that

||v∗ − vk+1||∞ = ||Bv∗ − vk+1||∞
≤ ||Bv∗ − Bvk+1||∞ + ||Bvk+1 − vk+1||∞
= ||Bv∗ − Bvk+1||∞ + ||Bvk+1 − Bvk ||∞
≤ λ||v∗ − vk+1||∞ + λ||vk+1 − vk ||∞.

Rearranging terms and leveraging the stopping rule yields to

||vk+1 − v∗||∞ ≤
λ

1− λ
||vk+1 − vk ||∞ ≤

ε

2

Table of Contents

Markov Decision Processes
Problem Formulation
Control Policies and Value Functions

Solution Strategies
Value Iteration
Policy Iteration
Linear Programming

Approximate Dynamic Programming
Summary Policy and Value Iteration
Approximate Policy Iteration

Policy Iteration

Algorithm Steps:

1. Set k = 0 and select a policy πk ∈ Πd .

2. (Policy Evaluation). Compute the value function vk
πk ∈ R|S|

that is the solution to the following equation:

vkπk (s) = c(s, πk(s)) +
∑
s′∈S

λp(s ′|s, πk(s))vkπk (s ′)].

Recall that vk
πk = (I − Pπk)−1rπk .

3. (Policy Improvement). Set

πk+1(s) = min
a∈S

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)vkπk (s ′)].

]

4. If πk = πk+1 stop, π∗ = πk . Otherwise, set k = k + 1 and go
to Step 2.

Policy Iteration

Algorithm Steps:

1. Set k = 0 and select a policy πk ∈ Πd .
2. (Policy Evaluation). Compute the value function vk

πk ∈ R|S|
that is the solution to the following equation:

vkπk (s) = c(s, πk(s)) +
∑
s′∈S

λp(s ′|s, πk(s))vkπk (s ′)].

Recall that vk
πk = (I − Pπk)−1rπk .

3. (Policy Improvement). Set

πk+1(s) = min
a∈S

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)vkπk (s ′)].

]

4. If πk = πk+1 stop, π∗ = πk . Otherwise, set k = k + 1 and go
to Step 2.

Policy Iteration

Algorithm Steps:

1. Set k = 0 and select a policy πk ∈ Πd .
2. (Policy Evaluation). Compute the value function vk

πk ∈ R|S|
that is the solution to the following equation:

vkπk (s) = c(s, πk(s)) +
∑
s′∈S

λp(s ′|s, πk(s))vkπk (s ′)].

Recall that vk
πk = (I − Pπk)−1rπk .

3. (Policy Improvement). Set

πk+1(s) = min
a∈S

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)vkπk (s ′)].

]

4. If πk = πk+1 stop, π∗ = πk . Otherwise, set k = k + 1 and go
to Step 2.

Policy Iteration

Algorithm Steps:

1. Set k = 0 and select a policy πk ∈ Πd .
2. (Policy Evaluation). Compute the value function vk

πk ∈ R|S|
that is the solution to the following equation:

vkπk (s) = c(s, πk(s)) +
∑
s′∈S

λp(s ′|s, πk(s))vkπk (s ′)].

Recall that vk
πk = (I − Pπk)−1rπk .

3. (Policy Improvement). Set

πk+1(s) = min
a∈S

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)vkπk (s ′)].

]

4. If πk = πk+1 stop, π∗ = πk . Otherwise, set k = k + 1 and go
to Step 2.

Policy Iteration

Policy Iteration

Policy Iteration

Policy Iteration

Policy Iteration

Policy Evaluation Step

Direct Strategy

Solve the linear system of equations

vkπk = (I − λPπk)−1rπk

Iterative Strategy

Set vk,0
πk (s) = 0

Iterate vk,i+1
πk (s) = c(s, πk(s)) +

∑
s′∈S λp(s ′|s, πk(s))vk,i

πk (s ′)]

Stop when vk,i+1
πk (s) = vk,i

πk (s) for all s ∈ S and set vk,i
πk = vk

πk

Policy Evaluation Step

Direct Strategy

Solve the linear system of equations

vkπk = (I − λPπk)−1rπk

Iterative Strategy

Set vk,0
πk (s) = 0

Iterate vk,i+1
πk (s) = c(s, πk(s)) +

∑
s′∈S λp(s ′|s, πk(s))vk,i

πk (s ′)]

Stop when vk,i+1
πk (s) = vk,i

πk (s) for all s ∈ S and set vk,i
πk = vk

πk

Policy Evaluation: Properties

Theorem
For the policy iteration algorithm we have that
I The value function is non-increasing, i.e., vk+1

πk+1 ≤ vk
πk

I The algorithm converges in a finite number of iterations
I Let π∞ be the policy at convergence, then π∞ = π∗

Policy Evaluation: Properties

Proof sketch:
I The value function is non-increasing and there is a finite

number of policies (as the number of action is finite).
Therefore, the policy iteration algorithm converges in a finite
number of iterations

I At convergence we have that πk+1 = πk and therefore

vk+1(s) = min
a∈A

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)vk+1(s ′)
]
,∀s ∈ S.

Hence, vk+1 satisfies the Bellman equation and πk+1 = π∗.

Table of Contents

Markov Decision Processes
Problem Formulation
Control Policies and Value Functions

Solution Strategies
Value Iteration
Policy Iteration
Linear Programming

Approximate Dynamic Programming
Summary Policy and Value Iteration
Approximate Policy Iteration

Linear Programming

Linear Programming

Let α(s) > 0 for all s ∈ S and

v̄ = arg max
v∈R|S|

∑
s∈S

α(s)v(s)

subject to v(s) ≤ c(s, a) +
∑
s′∈S

λp(s ′|s, a)v(s ′),

∀a ∈ A, ∀s ∈ S.

then, we have that v̄ = v∗.

Linear Programming

Proof Sketch. By feasibility of v̄ we have

v̄(s) ≤ c(s, a) +
∑
s′∈S

λp(s ′|s, a)v̄(s ′), ∀a ∈ A, ∀s ∈ S.

which is equivalent to

v̄(s) ≤ min
a∈A

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)v̄(s ′)
]

= Bv(s̄), ∀s ∈ S.

Now recall that B is monotone and therefore
v(s) ≤ Bv(s) ≤ B2v(s) ≤ . . . ≤ B∞v(s) = v∗(s), ∀s ∈ S..Hence,
any feasible solution v(s) ≤ Bv(s) ≤ v∗(s) = Bv∗(s). Concluding
as α(s) > 0, the feasible solution v∗(s) is optimal.

Table of Contents

Markov Decision Processes
Problem Formulation
Control Policies and Value Functions

Solution Strategies
Value Iteration
Policy Iteration
Linear Programming

Approximate Dynamic Programming
Summary Policy and Value Iteration
Approximate Policy Iteration

Summary Policy and Value Iteration
Policy Iteration

Policy Evaluation: Find Vπk by solving

Vπk (s) = c(s, πk(s)) +
∑
s′∈S

λp(s ′|s, πk(a))Vπk (s ′), ∀s ∈ S.

Policy Improvement: Compute πk+1 as

πk+1(s) = min
a∈A

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)Vπk (s ′)
]
, ∀s ∈ S.

Value Iteration
For any V ∈ R|S| compute

V ∗(s) = lim
k→∞

BkV (s), ∀s ∈ S.

Summary Policy and Value Iteration
Policy Iteration

Policy Evaluation: Find Vπk by solving

Vπk (s) = c(s, πk(s)) +
∑
s′∈S

λp(s ′|s, πk(a))Vπk (s ′), ∀s ∈ S.

Policy Improvement: Compute πk+1 as

πk+1(s) = min
a∈A

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)Vπk (s ′)
]
, ∀s ∈ S.

Value Iteration
For any V ∈ R|S| compute

V ∗(s) = lim
k→∞

BkV (s), ∀s ∈ S.

Table of Contents

Markov Decision Processes
Problem Formulation
Control Policies and Value Functions

Solution Strategies
Value Iteration
Policy Iteration
Linear Programming

Approximate Dynamic Programming
Summary Policy and Value Iteration
Approximate Policy Iteration

Approximate Policy Iteration

Policy Iteration

Policy Evaluation: Find Vπk by solving

Vπk (s) = c(s, πk(s)) +
∑
s′∈S

λp(s ′|s, πk(a))Vπk (s ′), ∀s ∈ S.

Policy Improvement: Compute πk+1 as

πk+1(s) = min
a∈A

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)Vπk (s ′)
]
, ∀s ∈ S.

I Perform the policy evaluation step for all s ∈ S̄ ⊂ S
I Similar strategies for Value Iteration and Linear Programming

Approximation in the Value Space

Policy Iteration w/ Value Function Approximation
We focus on a variant of approximate policy iteration based on
Monte Carlo simulations and function approximation.

Approximate Policy Iteration

Policy Evaluation: For a set of representative states S̄ ⊂ S run
M simulations using the policy πk . Then, compute the cost of each
ith simulation from the state s ∈ S̄ denoted as c̄(i , s) and
approximate the value function V̂θ(s) =

∑
s∈S θ

>φ(s) solving the
following problem

θk = arg min
θ

∑
s∈S̄

M∑
i=1

||V̂θ(s)− c̄(i , s)||.

Policy Improvement: Compute πk+1 as

πk+1 = min
a∈A

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)V̂θk (s ′)
]
.

Theoretical Basis for Approximate Policy Iteration

Theorem
If policies are approximately evaluated using an approximated value
function such that

max
s
|Vθk (s)− Vπk (s)| ≤ δ, ∀k = 0, 1, . . .

and the policy improvement is approximate

max
s
|Bπk+1Vθk (s)− BVθk (s)| ≤ ε, ∀k = 0, 1,

Then, we have that

lim sup
k→∞

max
s
|Vπk (s)− V ∗(s)| ≤ ε+ 2λδ

(1− λ)2

Readings

I Chapter 2 and Chapter 6.2 “Neuro-Dynamic Programming”
Dimitri P. Bertsekas and John Tsitsiklis

I Chapter 6 “Markov decision processes: discrete stochastic
dynamic programming.” M. Puterman

I D. Bertsekas, “Feature-based aggregation and deep
reinforcement learning: A survey and some new
implementations.” IEEE/CAA Journal of Automatica Sinica
6.1 (2018): 1-31.

I D. Bertsekas, “Biased aggregation, rollout, and enhanced
policy improvement for reinforcement learning.” arXiv preprint
arXiv:1910.02426 (2019).

I D. P. De Farias, and B. Van Roy. “The linear programming
approach to approximate dynamic programming.” Operations
research 51.6 (2003): 850-865.

Summary
I We discussed how to solve optimal control problem with

discrete state and action spaces of the form

π∗ = arg min
π

E

[∞∑
t=0

λtr(st , at)|π

]
.

I The solution can be computed exactly given a known model
and state-action spaces of moderate size.

I Approximate dynamic programming can be used to reduce the
computational complexity of syntehsis strategies.

What is next?

Optimal Control Problem with Continuous State Spaces:
In the next lectures we will
I Compute a control policy mapping continuous state to

continuous control action

π : Rn → Rd

I Leverage the same ideas to synthesize optimal policies, but
computing/approximating the value function is harder for
problem with constraints.

I Present learning-based strategies to approximate the value
function in continuous state-action spaces.

	Markov Decision Processes
	Problem Formulation
	Control Policies and Value Functions

	Solution Strategies
	Value Iteration
	Policy Iteration
	Linear Programming

	Approximate Dynamic Programming
	Summary Policy and Value Iteration
	Approximate Policy Iteration

