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Markov Decision Process

A Markov decision process (MDP) is a tuple (S,A,Ts , c), where
I S = {1, . . . , |S|} is a set of states;
I A = {1, . . . , |A|} is a set of actions;
I The function Ts : S ×A× S → [0, 1] describes the probability

of transitioning to a state s ′ given the action a and the
system’s state s,

Ts(s, a, s ′) :=P(sk+1 =s ′|sk =s, ak =a) = p(s ′|s, a);

I The cost function c : S ×A → R assigns an instantaneous
cost to each state-action pairs;



Markov Decision Process



Deterministic And Random Policies

Deterministic Policies
Define the set of deterministic policies Πd . A deterministic policy
πd ∈ Πd maps states to actions, i.e.,

ak = πd(sk).

Random Policies
Define the set of random policies Πr . A random policy πr ∈ Πr

maps states to probability distributions, i.e.,

ak ∼ πr (sk).
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Markov Decision Process
A Markov decision process (MDP) is a tuple (S,A,Ts ,R), where
I S = {1, . . . , |S|} is a set of states;
I A = {1, . . . , |A|} is a set of actions;
I The function Ts : S ×A× S → [0, 1] describes the probability

of transitioning to a state s ′ given the action a and the
system’s state s,

Ts(s, a, s ′) :=P(sk+1 =s ′|sk =s, ak =a) = p(s ′|s, a);

I The cost function R : S ×A → R assigns an instantaneous
cost to each state-actions pairs;

Goal
Find a policy π∗ = [π∗0, π

∗
1, . . .] defined as

π∗ = arg min
π

E

[ ∞∑
t=0

λtc(st , at)|π

]



Markov Decision Process

Goal
Find a policy π∗ = [π∗0, π

∗
1, . . .] defined as

π∗ = arg min
π

E

[ ∞∑
t=0

λtc(st , at)|π

]

I The discount factor λ ∈ (0, 1).
I The action at = πt(st) or at ∼ πt(st).
I E[

∑∞
t=0 λ

tc(st , at)|π] denotes the expectation under the
policy π.



Markov Decision Process – Assumptions

Assumption 1. (Stationary costs and transition probabilities)
The cost function c(s, a) and the transition probabilities P(s ′|s, a)
do not vary.

Assumption 2. (Bounded costs) The cost function
|c(s, a)| ≤ M <∞ for all a ∈ A and s ∈ S.

Assumption 3. (Discrete State and Action Spaces) The state
space S and the action space A are finite and discrete.

Assumption 4. (Discounting) The future costs are discounted by
a factor λ and 0 ≤ λ < 1.
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Deterministic And Random Policies

Deterministic Policies
Define the set of deterministic policies Πd . A deterministic policy
πd ∈ Πd maps states to actions, i.e.,

ak = πd(sk).

Random Policies
Define the set of random policies Πr . A random policy πr ∈ Πr

maps states to probability distributions, i.e.,

ak ∼ πr (sk).



Deterministic Vs Random Policies

I For unconstrained problems we have that

min
π∈Πd

E

[ ∞∑
t=0

λtc(st , at)|π

]
= min

π∈Πr
E

[ ∞∑
t=0

λtc(st , at)|π

]

There is no performance gain in optimizing over the larger set
of random policies.

I For constrained problems we have that

min
π∈Πd

E

[ ∞∑
t=0

λtc(st , at)|π

]

s.t. E

[ ∞∑
t=0

g(st , at)|π

]
≤ ε.
≥

min
π∈Πr

E

[ ∞∑
t=0

λtc(st , at)|π

]

s.t. E

[ ∞∑
t=0

g(st , at)|π

]
≤ ε.

A randomized policy perform better for constrained problems.
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Deterministic Vs Random Policies

I The action space A = {Action 1,Action 2}, state space
S = {1, 2, 3, 4, 5} and the state s = 5 is a sink state.

I The cost function c(s, a) = 0 for all s ∈ S \ {3}, a ∈ A and
c(3, a) = −1 for all a ∈ A.

I The constraint function g(s, a) = 0 for all s ∈ S \ {4}, a ∈ A
and g(4, a) = 1 for all a ∈ A.

I Pick ε < 0.1, then a deterministic policy must choose Action 1
from s = 1 to meet the constraint E

[∑H
t=0 g(st , at)|π

]
≤ ε.



Value Functions
Value Function
The value function vπ is a vector in R|S| where each entry vπ(s)
represents the cumulative cost of applying the policy π ∈ Πd from
the state s ∈ S , i.e.,

vπ(s) = E

[ ∞∑
t=0

λtc(st , at)|π, s

]
.

Consider a stationary policy π = [π, π, . . .] with π ∈ Πd . Then vπ
is the unique solution of

v = rπ + λPπv

where
I the vector rπ ∈ R|S| where rπ(s) = c(s, π(s))
I the matrix Pπ ∈ R|S|×|S| where Pπ(s, s ′) = p(s ′|s, π(s))
I the value function v = (I − λPπ)−1rπ =

∑∞
t=0 λ

tPt
πrπ



Value Function – The Parking Example

The set of states
S = {1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T}.



Value Function – The Parking Example

Two actions are available: {move forward, park}.

Let πm be a deterministic policy that selects the action
move forward, then Pπm is defined by the following table:

1f 1o 2f 2o . . . G T
p 1-p 1f
p 1-p 1o

. . .
...

1 6f
1 6o

1 G
1 T

where each entry Pπ(s, s ′) = p(s ′|s, π(s)) for s ∈ S, s ′ ∈ S and
S = {1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T}.



Value Function – The Parking Example

Two actions are available: {move forward, park}.

Let πp be a deterministic policy that selects the action park, then
Pπp is defined by the following table:

1f 1o 2f 2o . . . G T
1 1f

p 1-p 1o
. . .

...
1 6f

1 6o
1 G
1 T

where each entry Pπ(s, s ′) = p(s ′|s, π(s)) for s ∈ S, s ′ ∈ S and
S = {1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T}.



Value Function – The Parking Example

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T ].
Value Function = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0].
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Markov Decision Process

Goal
Find a stationary policy π∗ = [π∗, π∗, . . .] defined as

π∗ = arg min
π

E

[ ∞∑
t=0

λtc(st , at)|π

]

Optimality Conditions

Given a value function which satisfies:

v∗(s) = arg min
a∈A

c(s, a) +
∑
s′∈S

λv∗(s ′)p(s ′|s, a).

Then, the optimal policy is:

π(s) = min
a∈A

c(s, a) +
∑
s′∈S

λv∗(s ′)p(s ′|s, a)



Markov Decision Process

Goal
Find a stationary policy π∗ = [π∗, π∗, . . .] defined as

π∗ = arg min
π

E

[ ∞∑
t=0

λtc(st , at)|π

]

Optimality Conditions

Given the optimal value function v∗ that satisfies the Bellman
recursion v∗ = Bv∗ defined as follows:

v∗(s) = min
a∈A

[c(s, a) +
∑
s′∈S

λv∗(s ′)p(s ′|s, a)], ∀s ∈ S.

Then, the optimal policy is:

π∗(s) = arg min
a∈A

[c(s, a) +
∑
s′∈S

λv∗(s ′)p(s ′|s, a)]
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Value Iteration

Algorithm Steps:

1. Select v0 ∈ R|S|, set k = 0 and pick a tolerance ε ≥ 0

2. For each s ∈ S compute vk+1 ∈ R|S| where

vk+1(s) = min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)vk(s ′)]

3. If
||vk+1 − vk || ≥ ε(1− λ)

2λ
set k = k + 1 and go to step 2.

4. Define the control policy

πvi(s) = arg min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)vk+1(s ′)]
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Value Iteration

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T ].



Value Iteration

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T ].



Value Iteration

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T ].



Value Iteration

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T ].



Value Iteration

State Vector = [1f , 1o , 2f , 2o , 3f , 3o , 4f , 4o , 5f , 5o , 6f , 6o ,G ,T ].



Value Iteration
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Value Iteration: Properties

Theorem
Let {vk} be a sequence defined by the Bellman recursion and
consider the stopping rule

||vk+1 − vk ||∞ < ε
(1− λ)

2λ
(1)

Then we have that
I vk converges in norm to v∗ and the convergence is linear with

rate λ.
I If (1) holds for a finite N, then (1) holds for k ≥ N.
I If (1) holds for a finite N, then ||vN+1 − v∗||∞ < ε/2 and πvi

is ε-optimal.

Variants to the Value Iteration with better convergence rate in
Chapter 6 of “Markov decision processes: discrete stochastic
dynamic programming” by M. Puterman. John Wiley & Sons, 2014.



Value Iteration: Convergence Proof
Define the Bellman backup operator B : R|S| → R|S|

Bv(s) = min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)v(s ′)]

which is a contraction as

|Bv0(s)− Bv1(s)| = |min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)v0(s ′)]

−min
a∈A

[c(s, a) +
∑
s′∈S

λp(s ′|s, a)v1(s ′)]|

≤ max
a∈A

λ|
∑
s′∈S

p(s ′|s, a)v0(s ′)−
∑
s′∈S

p(s ′|s, a)v1(s ′)|

= max
a∈A

λ
∑
s′∈S

p(s ′|s, a)|v0(s ′)− v1(s ′)|

≤ λmax
s′∈S
|v0(s ′)− v1(s ′)|.

Then, by the fixed-point theorem, we have that Bv∗ = v∗ and the
sequence vk+1 = Bvk = Bk+1v0 converges to v∗.



Value Iteration: Suboptimality Proof

We notice that

||v∗ − vk+1||∞ = ||Bv∗ − vk+1||∞
≤ ||Bv∗ − Bvk+1||∞ + ||Bvk+1 − vk+1||∞
= ||Bv∗ − Bvk+1||∞ + ||Bvk+1 − Bvk ||∞
≤ λ||v∗ − vk+1||∞ + λ||vk+1 − vk ||∞.

Rearranging terms and leveraging the stopping rule yields to

||vk+1 − v∗||∞ ≤
λ

1− λ
||vk+1 − vk ||∞ ≤

ε

2
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Policy Iteration

Algorithm Steps:

1. Set k = 0 and select a policy πk ∈ Πd .

2. (Policy Evaluation). Compute the value function vk
πk ∈ R|S|

that is the solution to the following equation:

vkπk (s) = c(s, πk(s)) +
∑
s′∈S

λp(s ′|s, πk(s))vkπk (s ′)].

Recall that vk
πk = (I − Pπk )−1rπk .

3. (Policy Improvement). Set

πk+1(s) = min
a∈S

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)vkπk (s ′)].

]

4. If πk = πk+1 stop, π∗ = πk . Otherwise, set k = k + 1 and go
to Step 2.
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Policy Evaluation Step

Direct Strategy

Solve the linear system of equations

vkπk = (I − λPπk )−1rπk

Iterative Strategy

Set vk,0
πk (s) = 0

Iterate vk,i+1
πk (s) = c(s, πk(s)) +

∑
s′∈S λp(s ′|s, πk(s))vk,i

πk (s ′)]

Stop when vk,i+1
πk (s) = vk,i

πk (s) for all s ∈ S and set vk,i
πk = vk

πk
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Policy Evaluation: Properties

Theorem
For the policy iteration algorithm we have that
I The value function is non-increasing, i.e., vk+1

πk+1 ≤ vk
πk

I The algorithm converges in a finite number of iterations
I Let π∞ be the policy at convergence, then π∞ = π∗



Policy Evaluation: Properties

Proof sketch:
I The value function is non-increasing and there is a finite

number of policies (as the number of action is finite).
Therefore, the policy iteration algorithm converges in a finite
number of iterations

I At convergence we have that πk+1 = πk and therefore

vk+1(s) = min
a∈A

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)vk+1(s ′)
]
,∀s ∈ S.

Hence, vk+1 satisfies the Bellman equation and πk+1 = π∗.
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Linear Programming

Linear Programming

Let α(s) > 0 for all s ∈ S and

v̄ = arg max
v∈R|S|

∑
s∈S

α(s)v(s)

subject to v(s) ≤ c(s, a) +
∑
s′∈S

λp(s ′|s, a)v(s ′),

∀a ∈ A, ∀s ∈ S.

then, we have that v̄ = v∗.



Linear Programming

Proof Sketch. By feasibility of v̄ we have

v̄(s) ≤ c(s, a) +
∑
s′∈S

λp(s ′|s, a)v̄(s ′), ∀a ∈ A, ∀s ∈ S.

which is equivalent to

v̄(s) ≤ min
a∈A

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)v̄(s ′)
]

= Bv(s̄), ∀s ∈ S.

Now recall that B is monotone and therefore
v(s) ≤ Bv(s) ≤ B2v(s) ≤ . . . ≤ B∞v(s) = v∗(s), ∀s ∈ S..Hence,
any feasible solution v(s) ≤ Bv(s) ≤ v∗(s) = Bv∗(s). Concluding
as α(s) > 0, the feasible solution v∗(s) is optimal.
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Summary Policy and Value Iteration
Policy Iteration

Policy Evaluation: Find Vπk by solving

Vπk (s) = c(s, πk(s)) +
∑
s′∈S

λp(s ′|s, πk(a))Vπk (s ′), ∀s ∈ S.

Policy Improvement: Compute πk+1 as

πk+1(s) = min
a∈A

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)Vπk (s ′)
]
, ∀s ∈ S.

Value Iteration
For any V ∈ R|S| compute

V ∗(s) = lim
k→∞

BkV (s), ∀s ∈ S.
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Approximate Policy Iteration

Policy Iteration

Policy Evaluation: Find Vπk by solving

Vπk (s) = c(s, πk(s)) +
∑
s′∈S

λp(s ′|s, πk(a))Vπk (s ′), ∀s ∈ S.

Policy Improvement: Compute πk+1 as

πk+1(s) = min
a∈A

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)Vπk (s ′)
]
, ∀s ∈ S.

I Perform the policy evaluation step for all s ∈ S̄ ⊂ S
I Similar strategies for Value Iteration and Linear Programming



Approximation in the Value Space



Policy Iteration w/ Value Function Approximation
We focus on a variant of approximate policy iteration based on
Monte Carlo simulations and function approximation.

Approximate Policy Iteration

Policy Evaluation: For a set of representative states S̄ ⊂ S run
M simulations using the policy πk . Then, compute the cost of each
ith simulation from the state s ∈ S̄ denoted as c̄(i , s) and
approximate the value function V̂θ(s) =

∑
s∈S θ

>φ(s) solving the
following problem

θk = arg min
θ

∑
s∈S̄

M∑
i=1

||V̂θ(s)− c̄(i , s)||.

Policy Improvement: Compute πk+1 as

πk+1 = min
a∈A

[
c(s, a) +

∑
s′∈S

λp(s ′|s, a)V̂θk (s ′)
]
.



Theoretical Basis for Approximate Policy Iteration

Theorem
If policies are approximately evaluated using an approximated value
function such that

max
s
|Vθk (s)− Vπk (s)| ≤ δ, ∀k = 0, 1, . . .

and the policy improvement is approximate

max
s
|Bπk+1Vθk (s)− BVθk (s)| ≤ ε, ∀k = 0, 1, . . . .

Then, we have that

lim sup
k→∞

max
s
|Vπk (s)− V ∗(s)| ≤ ε+ 2λδ

(1− λ)2
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policy improvement for reinforcement learning.” arXiv preprint
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approach to approximate dynamic programming.” Operations
research 51.6 (2003): 850-865.



Summary
I We discussed how to solve optimal control problem with

discrete state and action spaces of the form

π∗ = arg min
π

E

[ ∞∑
t=0

λtr(st , at)|π

]
.

I The solution can be computed exactly given a known model
and state-action spaces of moderate size.

I Approximate dynamic programming can be used to reduce the
computational complexity of syntehsis strategies.



What is next?

Optimal Control Problem with Continuous State Spaces:
In the next lectures we will
I Compute a control policy mapping continuous state to

continuous control action

π : Rn → Rd

I Leverage the same ideas to synthesize optimal policies, but
computing/approximating the value function is harder for
problem with constraints.

I Present learning-based strategies to approximate the value
function in continuous state-action spaces.
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