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Summary of Last Lecture

I We discussed how to solve optimal control problem with
discrete state and action spaces of the form

π∗ = arg min
π

E

[ ∞∑
t=0

λtc(st , at)|π

]
.

I The solution can be computed exactly given a known model
and state-action spaces of moderate size.

I Approximate dynamic programming can be used to reduce the
computational complexity of syntehsis strategies.



Next Three Lectures

We will focus on Model Predictive Control (MPC) design. Our
goals will be:

I Theoretical analysis of safety and stability properties
I Learn what makes control problems hard
I Get familiar with Python toolboxes for control synthesis (via

HW problems)
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Today’s Class: Optimal Control Problem with Continuous
State Spaces

Goal: Compute a control policy mapping continuous states to
continuous control actions

π : Rn → Rd .

We will consider different cases
I Linear Quadratic Regulator
I Constrained Linear Quadratic Regulator
I General control problem with nonlinear dynamics

Key Message: For problem with continuous state-action spaces
computing an optimal trajectory is “easy”, but computing a policy is
hard when we have constraints !



Today’s Class: Deterministic Problems
Computing the expected cost for problems with continuous
state-action spaces is hard!
I Consider an MDP with where the state x ∈ X ⊆ Rn, the input

u ∈ Rd and x ′ ∼ p(x ′|x , u). Then for the function
V : Rn → R we have that

E[V (x ′)|x , u] =

∫
X
V (x ′)p(x ′|x , u)dx ′

I Consider an MDP with where the state s ∈ S = {1, 2, . . .},
the action a ∈ A = {1, 2, . . .} and s ′ ∼ p(s ′|s, a). Then for
the function V : S → R we have that

E[V (s ′)|s, a] =
∑
S

V (s ′)p(s ′|s, a)

There are several methodologies to handle expected cost in
continuous settings. These strategies build on the ideas that we will
present in this class.
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Problem Formulation

Consider the discrete time system

x(k + 1) = f (x(k), u(k))

where the state x(k) ∈ Rn and the input u(k) ∈ Rd . The above
system is subject to the constraints

g(x(k), u(k)) ≤ 0,∀k ≥ 0. (1)

Goal
Our goal is to find a control policy π : Rn × N+ → Rd that maps
states to controls, i.e., u(t) = π(x(t), t). Furthermore, the policy π
should guarantee that:
I State and input constraints (1) are satisfied.
I A used-defined cost function is minimized.
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Optimal Control – Preliminaries

I In discrete-time optimal control problems the goal is to find a
sequence of predicted controls u0→N = {u0, . . . , uN−1} that
for an initial conditions x(0) minimizes a cost function while
satisfying state and input constraints.

I The sequence of predicted states x0→N = {x0, . . . , xN} is by

xk+1 = f (xk , uk), ∀k ∈ {0, . . . ,N − 1},
x0 = x(0).

The predicted states and inputs must satisfy

g(xk , uk) ≤ 0,∀k ∈ {0, . . . ,N − 1}



Optimal Control – Preliminaries
I The sequences of predicted states and inputs should minimize

the following cost function:

N−1∑
k=0

h(xk , uk) + q(xN)

I Oftentimes it is required that the terminal predicted state xN
lays in a terminal set

xN ∈ XN ⊂ Rn.



Optimal Control – Problem Formulation

Consider the following Constrained Finite Time Optimal Control
Problem (CFTOCP):

J∗0→N(x(0)) = min
u0→N

N−1∑
k=0

h(xk , uk) + q(xN)

subject to xk+1 = f (xk , uk),∀k ∈ {0, . . . ,N − 1},
g(xk , uk) ≤ 0,∀k ∈ {0, . . . ,N − 1},
xN ∈ XF , x0 = x(0).

I the optimal cost J∗0→N(x0) is the value function of the
problem.

I the optimal sequence of actions is denoted as
u∗0→N = {u∗0 , . . . , u∗N−1}.



Table of Contents

Optimal Control Introduction

Linear Quadratic Optimal Control
Problem Formulation
Batch Approach
Dynamic Programming Approach

Constrained Linear Quadratic Optimal Control
Problem Formulation
QP with Substitution
QP without Substitution

Constrained Nonlinear Optimal Control
Batch Approach
Linearization
Sequential Quadratic Program
Dynamic Programming Approach



Linear Quadratic Optimal Control

We consider linear discrete-time time-invariant systems

x(k + 1) = Ax(k) + Bu(k)

and quadratic cost functions

J0(x(0),U0) , x>N PxN +
N−1∑
k=0

[x>k Qxk + u>k Ruk ]. (2)

In this settings states and inputs are unconstrained.

We will solve the above LQR problem with following approaches:
1. Batch Approach, which yields a series of numerical values for

the input

2. Recursive Approach, which uses Dynamic Programming to
compute control policies or laws.



Unconstrained Finite Horizon Control Problem
Goal: Find a vector of inputs U0 = [u>0 , . . . , u

>
N−1]> that

minimizes the objective function

J∗0 (x(0)) , min
U0

x>N PxN +
N−1∑
k=0

[x>k Qxk + u>k Ruk ]

subject to xk+1 = Axk + Buk , k = 0, . . . ,N − 1
x0 = x(0)

I P � 0, with P = P>, is the terminal weight
I Q � 0, with Q = Q>, is the state weight
I R � 0, with R = R>, is the input weight
I N is the horizon length
I Note that x(0) is the current state, whereas x0, . . . , xN and

u0, . . . , uN−1 are optimization variables that are constrained to
obey the system dynamics and the initial condition.
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Solution approach 1: Batch Approach (1/4)

I The batch solution explicitly represents all future states xk in
terms of initial condition x0 and inputs u0, . . . , uN−1.

I Starting with x0 = x(0), we have x1 = Ax(0) + Bu0, and
x2 = Ax1 + Bu1 = A2x(0) + ABu0 + Bu1, by substitution for
x1, and so on. Continuing up to xN we obtain:

x0
x1
...
...
xN

 =


I
A
...
...

AN

 x(0)+


0 · · · · · · 0
B 0 · · · 0
AB B · · · 0
...

. . . . . . 0
AN−1B · · · AB B




u0
u1
...
...

uN−1


I The equation above can be represented as

X0 , Sxx(0) + SuU0 . (3)



Solution approach 1: Batch Approach (2/4)

I Define

Q , blockdiag(Q, . . . ,Q,P) and R , blockdiag(R, . . . ,R)

Then the finite horizon cost function can be written as

J0(x(0),U0) = X>0 QX0 + U>0 RU0 . (4)

I Eliminating X0 by substituting from (9), equation (4) can be
expressed as:

J0(x(0),U0) = (Sxx(0) + SuU0)>Q(Sxx(0) + SuU0) + U>0 RU0

= U>0 HU0 + 2x(0)>FU0 + x(0)>S>x QSxx(0)

where H , S>u QSu + R and F , S>x QSu.
I Note that H � 0, since R � 0 and S>u QSu � 0.



Solution approach 1: Batch Approach (3/4)
I Since the problem is unconstrained and J0(x(0),U0) is a

positive definite quadratic function of U0 we can solve for the
optimal input U0 by setting the gradient with respect to U0 to
zero:

∇U0J0(x(0),U0) = 2HU0 + 2F>x(0) = 0

⇒ U0(x(0)) = −H−1F>x(0)

= −(S>u QSu + R)−1S>u QSxx(0)

= Kx(0) ,

which is a linear function of the initial state x(0).
Note H−1 always exists, since H � 0 and therefore has full
rank.

I The optimal cost can be shown (by back-substitution) to be

J∗0 (x(0)) = −x(0)>FH−1Fx(0) + x(0)>S>x QSxx(0)

= x(0)>(S>x QSx − S>x QSu(S>u QSu + R)−1S>u QSx)x(0).



Solution approach 1: Batch Approach (4/4)
Summary
I The Batch Approach expresses the cost function in terms of

the initial state x(0) and input sequence U0 by eliminating the
states xk .

I Because the cost J0(x(0),U0) is a strictly convex quadratic
function of U0, its minimizer U0 is unique and can be found by
setting ∇U0J0(x(0),U0) = 0. This gives the optimal input
sequence U0 as a linear function of the initial state x(0):

U0(x(0)) = −(S>u QSu + R)−1S>u QSxx(0)

= Kx(0)

I The optimal cost is a quadratic function of the initial
state x(0)

J0(x(0)) = x(0)>(S>x QSx−S>x QSuS>u QSu+R)−1S>u QSx)x(0)

I If there are state or input constraints, solving this problem by
matrix inversion is not guaranteed to result in a feasible input
sequence



Final Result

I The problem is unconstrained
I Setting the gradient to zero:

U∗0 (x(0)) = Kx(0)

which implies

u∗0(x(0)) = K0x(0), . . . , u∗N−1(x(0)) = KN−1x(0)

which is a linear, open-loop controller function of the initial
state x(0).

I The optimal cost is

J∗0 (x(0)) = x>(0)P0x(0)

which is a positive definite quadratic function of the initial
state x(0).
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Recall: Finite Horizon LQR

I Goal: Find a sequence of inputs U0 , [u>0 , . . . , u
>
N−1]> that

minimizes the objective function

J∗0 (x(0)) , min
U0

x>N PxN +
N−1∑
k=0

[x>k Qxk + u>k Ruk ]

subject to xk+1 = Axk + Buk , k = 0, . . . ,N − 1
x0 = x(0)

I P � 0, with P = P>, is the terminal weight
I Q � 0, with Q = Q>, is the state weight
I R � 0, with R = R>, is the input weight
I N is the horizon length
I Note that x(0) is the current state, whereas x0, . . . , xN and

u0, . . . , uN−1 are optimization variables that are constrained to
obey the system dynamics and the initial condition.



LQR – The Dynamic Programming Approach

Principle of Optimality

Let x∗0→N = {x∗0 = x0, . . . , x
∗
N} and u∗0→N = {u∗0 , . . . , u∗N−1} be

the optimal sequences of state and input for the FTOCP J∗0→N(x0).
Then we have that the sequences {x∗k , . . . , x∗N} and {u∗k , . . . , u∗N−1}
are optimal for the FTOCP J∗k→N(x∗k ),∀k ∈ {0, . . . ,N − 1}.

Given the optimal value function J∗k→N at time k we can compute

J∗k−1→N(xk−1) = min
uk−1

h(xk−1, uk−1) + J∗k→N(xk)

subject to xk = f (xk−1, uk−1)

g(xk−1, uk−1) ≤ 0.

I J∗k→N is often called the optimal cost-to-go.
I h is often called the stage cost.
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Solution approach 2: Recursive Approach (1/8)

I Alternatively, we can use dynamic programming to solve the
same problem in a recursive manner.

I Define the “ j-step optimal cost-to-go” as the optimal cost
attainable for the step j problem:

J∗j (x(j)) , min
uj ,...,uN−1

x>N PxN +
N−1∑
k=j

[x>k Qxk + u>k Ruk ]

subject to xk+1 = Axk + Buk , k = j , . . . ,N − 1
xj = x(j)

This is the minimum cost attainable for the remainder of the
horizon after step j



Solution approach 2: Recursive Approach (2/8)

I Consider the 1-step problem (solved at time N − 1)

J∗N−1(xN−1) = min
uN−1
{x>N−1QxN−1 + u>N−1RuN−1 + x>N PNxN}

(5)

subject to xN = AxN−1 + BuN−1 (6)
PN = P

where we introduced the notation Pj to express the optimal
cost-to-go x>j Pjxj . In particular, PN = P .

I Substituting (6) into (5)

J∗N−1(xN−1) = min
uN−1
{x>N−1(A>PNA + Q)xN−1

+ u>N−1(B>PNB + R)uN−1

+ 2x>N−1A
>PNBuN−1}



Solution approach 2: Recursive Approach (3/8)

I Solving again by setting the gradient to zero leads to the
following optimality condition for uN−1

2(B>PNB + R)uN−1 + 2B>PNAxN−1 = 0

Optimal 1-step input:

u∗N−1 = −(B>PNB + R)−1B>PNAxN−1

, KN−1xN−1

1-step cost-to-go:

J∗N−1(xN−1) = x>N−1PN−1xN−1 ,

where

PN−1 = A>PNA + Q − A>PNB(B>PNB + R)−1B>PNA .



Solution approach 2: Recursive Approach (4/8)

I The recursive solution method used from here relies on
Bellman’s Principle of Optimality

I For any solution for steps 0 to N to be optimal, any solution
for steps j to N with j ≥ 0, taken from the 0 to N solution,
must itself be optimal for the j-to-N problem

I Therefore we have, for any j = 0, . . . ,N

J∗j (xj) = min
uj
{J∗j+1(xj+1) + x>j Qxj + u>j Ruj}

s.t. xj+1 = Axj + Buj

I Suppose that the fastest route from Los Angeles to Boston passes
through Chicago. Then the principle of optimality formalizes the obvious
fact that the Chicago to Boston portion of the route is also the fastest
route for a trip that starts from Chicago and ends in Boston.



Solution approach 2: Recursive Approach (5/8)

I Now consider the 2-step problem, posed at time N − 2

J∗N−2(xN−2) = min
uN−1,uN−2

{
N−1∑

k=N−2

x>k Qxk + u>k Ruk + x>N PxN

}
s.t. xk+1 = Axk + Buk , k = N − 2,N − 1

I From the Principle of Optimality, the cost function is
equivalent to

J∗N−2(xN−2) = min
uN−2
{J∗N−1(xN−1)

+ x>N−2QxN−2 + u>N−2RuN−2}
= min

uN−2
{x>N−1PN−1x

>
N−1

+ xN−2QxN−2 + u>N−2RuN−2}



Solution approach 2: Recursive Approach (6/8)

I As with 1-step solution, solve by setting the gradient with
respect to uN−2 to zero

Optimal 2-step input

u∗N−2 = −(B>PN−1B + R)−1B>PN−1AxN−2

, KN−2xN−2

2-step cost-to-go

J∗N−2(xN−2) = x>N−2PN−2xN−2 ,

where

PN−2 = A>PN−1A+Q−A>PN−1B(B>PN−1B+R)−1B>PN−1A

I We now recognize the recursion for Pj and u∗j ,
j = N − 1, · · · , 0.



Solution approach 2: Recursive Approach (7/8)

I We can obtain the solution for any given time step k in the
horizon

u∗(k) = −(B>Pk+1B + R)−1B>Pk+1Ax(k)

, Kkx(k) for k = 0, . . . ,N − 1

where we can find any Pk by recursive evaluation from
PN = P , using

Pk = A>Pk+1A + Q −A>Pk+1B(B>Pk+1B + R)−1B>Pk+1A
(7)

This is called the Discrete Time Riccati Equation or Riccati
Difference Equation (RDE).

I Evaluating down to P0, we obtain the N-step cost-to-go

J∗0 (x(0)) = x(0)>P0x(0)



Solution approach 2: Recursive Approach (8/8)

Summary
I From the Principle of Optimality, the optimal control policy for

any step j is then given by

u∗(k) = −(B>Pk+1B + R)−1B>Pk+1Ax(k) = Kkx(k)

and the optimal cost-to-go is

J∗k (x(k)) = x>k Pkx(k)

I Each Pk is related to Pk+1 by the Riccati Difference Equation

Pk = A>Pk+1A+Q−A>Pk+1B(B>Pk+1B +R)−1B>Pk+1A ,

which can be initialized with PN = P , the given terminal
weight



Final Result

I The problem is unconstrained
I Using the Dynamic Programming Algorithm we have

u∗k = Kkxk

which is a linear, time-varying state-feedback controller.

I the optimal cost-to-go k → N is

J∗k (x(k)) = x(k)>Pkx(k)

which is a positive definite quadratic function of the state at
time k

I Kk is computed by using Pk+1

I Each Pk is related to Pk+1 by a recursive equation (Riccati
Difference Equation)
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The Bach Approach Vs Dynamic Programming Approach

In the batch approach we compute the optimal sequence of actions
u∗0→N = {u∗0 , . . . , u∗N−1}. Thus, the control policy is defined as

π(x(t), t) = u∗t .

In the dynamic programming approach we compute the optimal
value function J∗k→N ,∀k ∈ {0, . . . ,N}. Thus, the control policy is
defined as

π(x(t), t) = Ktx(t) = arg min
u

h(x(t), u) + J∗t+1→N(xt+1)

subject to xt+1 = Ax(t) + But



Batch Vs Dynamic Programming
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How about adding state and input constraints?

I Without any modification, both solution methods will break
down when inequality constraints on xk or uk are added.

I The Batch Approach is far easier to adapt than the Recursive
Approach when constraints are present: just perform a
constrained minimization for the current state.

I Doing this at every time step within the time available, and
then using only the first input from the resulting sequence,
amounts to receding horizon control.
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Constrained Quadratic Linear Optimal Control
Consider the Constrained Finite Time Optimal Control Problem
(CFTOCP):

J∗0 (x(0)) = min
U0

N−1∑
k=0

h(xk , uk) + x>NQF xN

such that xk+1 = Axk + Buk , k = 0, . . . ,N − 1
xk ∈ X , uk ∈ U , k = 0, . . . ,N − 1
xN ∈ XF

x0 = x(0)

(8)

where
I N is the time horizon.
I The state constraint set X = {x ∈ Rn : Fxx ≤ bx}.
I The input constraint set U = {u ∈ Rn : Fux ≤ bu}.
I The terminal XF = {x ∈ Rn : Ff x ≤ bf }.
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Quadratic Program with Substitution (1/4)

We re-write the CFTOCP as a Quadratic Program (QP) where the
optimization variable is the vector of inputs U0 = [u>0 , . . . , u

>
N−1]

I Starting with x0 = x(0), we have x1 = Ax(0) + Bu0, and
x2 = Ax1 + Bu1 = A2x(0) + ABu0 + Bu1, by substitution for
x1, and so on. Continuing up to xN we obtain:

x0
x1
...
...
xN

 =


I
A
...
...

AN

 x(0)+


0 · · · · · · 0
B 0 · · · 0
AB B · · · 0
...

. . . . . . 0
AN−1B · · · AB B




u0
u1
...
...

uN−1


I The equation above can be represented as

X0 , Sxx(0) + SuU0 . (9)



Quadratic Program with Substitution (2/4)

I Define the cost matrices

Q , blockdiag(Q, . . . ,Q,QF ) and R , blockdiag(R, . . . ,R)

Then the finite horizon cost function can be written as

J0(x(0),U0) = X>0 QX0 + U>0 RU0

= (Sxx(0) + SuU0)>Q(Sxx(0) + SuU0) + U>0 RU0

= U>0 HU0 + 2U0F
>x(0) + (Sxx(0))>QSxx(0),

where H = S>x QSx + R and F> = S>u QSx .



Quadratic Program with Substitution (3/4)
I For all k ∈ {0, . . . ,N − 1}, we have that the constraints xk ∈
X = {x ∈ Rn | Fxx ≤ bx}, uk ∈ U = {x ∈ Rd | Fuu ≤ bu}
and xN ∈ XF can be rewritten as

G0U0 ≤ E0x(0) + w0

where

G0 =



Fu 0 . . . 0
0 Fu . . . 0
...

...
. . .

...
0 0 . . . Fu
0 0 . . . 0

FxB 0 . . . 0
FxAB FxB . . . 0

...
...

. . .
...

Ff A
N−1B Ff A

N−2B . . . Ff B


,E0 =



0
0
...
0
−Fx
−FxA
−FxA2

...
−Ff AN


,w0 =



bu
bu
...
bu
bx
bx
bx
...
bf





Quadratic Program with Substitution (4/4)

Given the quantities defined in the previous slides we can write the
CFTOCP as

J∗0 (x(0)) = min
U0

U>0 HU0 + 2U0F
>x(0)

subject to G0U0 ≤ E0x(0) + w0.
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Quadratic Program without Substitution (1/4)
We re-write the FCTOCP as a Quadratic Program (QP) where the
optimization variables are the vectors of inputs
U0 = [u>0 , . . . , u

>
N−1]> and states X0 = [x>1 , . . . , x

>
N ]>.

I The dynamic constraints can be rewritten as

G0,eq

[
X0
U0

]
= E0,eqx(0).

where

G0,eq =


I −B
−A I −B

−A I −B
. . . . . . . . .

−A I −B


and E0,eq = [A>, 0, . . . , 0]>.



Quadratic Program without Substitution (2/4)
I Define the matrices G0,in, w0,in and E0,in:

G0,in =



0 . . . 0 0 . . . 0
Fx 0

Fx 0
. . . . . .

Fx 0
Ff 0

0 Fu
0 Fu

. . . . . .
0 Fu

0 Fu


E0,in = [−F>x , 0, . . . , 0]> ∈ R(nbxN+nbf +nbuN)×n,

w0,in = [b>x , . . . , b
>
x , b

>
f , b

>
u , . . . , b

>
u ]> ∈ R(nbxN+nbf +nbuN)

for the vectors bx ∈ Rnbx , bf ∈ Rnbf and bu ∈ Rnbu that are used to
define the constraint sets X , XF and U , respectively.



Quadratic Program without Substitution (3/4)

I Let G0,in, w0,in and E0,in be defined as in the previous slide.
Then we have that for all k ∈ {0, . . . ,N − 1} the state
xk ∈ X , the input uk ∈ U and xN ∈ XF if and only if

G0,in

[
X0
U0

]
≤ E0,inx(0) + w0,in.



Quadratic Program without Substitution (4/4)

Given the quantities defined in the previous slides we can write the
CFTOCP as

J∗0 (x(0)) = min
U0,X0

[X>0 ,U
>
0 ]

[
Q 0
0 R

] [
X0
U0

]
subject to G0,in

[
X0
U0

]
≤ E0,inx(0) + w0,in

G0,eq

[
X0
U0

]
= E0,eqx(0).

where

Q , blockdiag(Q, . . . ,Q,QF ) and R , blockdiag(R, . . . ,R).



Constrained Linear Quadratic Optimal Control – Summary

Batch Approaches
We presented two batch approaches to compute a sequence of
optimal control action u∗0→N = {u∗0 , . . . , u∗N−1}. Given
u∗0→N = {u∗0 , . . . , u∗N−1} a policy for the CLQR can be defined as

π(x(t), t) = u∗t .

Dynamic Programming Approach
In today’s class we did not discussed how to solve CLQP using
dynamic programming. Recall that the dynamic programming
recursion is defined as

J∗i (x(i)) = min
ui

h(x(i), ui ) + J∗i+1(Ax(i) + Bui )

such that Ax(i) + Bui ∈ X , ui ∈ U .

In order to solve the above recursion, we first need to discuss how
to explicitly compute the function J∗i+1 : Rn → R.
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N−1] a policy for the CLQR can be defined as

π(x(t), t) = u∗t .

Dynamic Programming Approach
Recall that the dynamic programming recursion is defined as

π(x(t), t) = arg min
ut

x(t)>Qx(t) + u>t Rut + J∗t+1(xt+1)

such that xt+1 = Ax(t) + But

xt+1 ∈ X , ut ∈ U .

In order to solve the above recursion, we need to explicitly compute
the function J∗t+1 : Rn → R.
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Optimal Control – Problem Formulation

Consider the following Constrained Finite Time Optimal Control
Problem (CFTOCP):

J∗0→N(x(0)) = min
u0→N

N−1∑
k=0

h(xk , uk) + q(xN)

subject to xk+1 = f (xk , uk),∀k ∈ {0, . . . ,N − 1},
g(xk , uk) ≤ 0,∀k ∈ {0, . . . ,N − 1},
xN ∈ XF , x0 = x(0).

I the optimal cost J∗0→N(x0) is the value function of the
problem.

I the optimal sequence of actions is denoted as
u∗0→N = {u∗0 , . . . , u∗N−1}.



Optimal Control – The Batch Approach
The FTOCP can be reformulated as a the following Non-Linear
Program (NLP):

J∗0→N(x(0)) = min
u0→N ,x0→N

N−1∑
k=0

h(xk , uk) + q(xN)

subject to x1 = f (x(0), u0),

...
xN = f (xN−1, uN−1),

g(xk , uk) ≤ 0, ∀k ∈ {0, . . . ,N − 1},
xN ∈ XF , x0 = x(0).

where the sequences u0→N and x0→N are optimization variables.
The above problem can be recast as an NLP, which can be solved
with off-the-shelf solvers:
I Not all NLPs are the same. Some are easy to solve!
I Smoothness allows us to leverage gradient-based strategies
I Most solvers are based on iterative linearization techniques



The Bach Approach Vs Dynamic Programming Approach

In the batch approach we compute the optimal sequence of actions
u∗0→N = {u∗0 , . . . , u∗N−1}. Thus, the control policy is defined as

π(x(t), t) = u∗t .

In the dynamic programming approach we compute the optimal
value function J∗k→N ,∀k ∈ {0, . . . ,N}. Thus, the control policy is
defined as

π(x(t), t) = arg min
u

h(x(t), u) + J∗t+1→N(xt+1).

subject to xt+1 = f (x(t), u)

g(x(t), u) ≤ 0.
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Constrained Nonlinear Optimal Control – Linearization (1/2)

Next we consider the following problem:

J∗0→N(x0) = min
u0→N

N−1∑
k=0

(x>k Qxk + u>k Ruk) + x>NQf xN

subject to xk+1 = f (xk , uk),∀k ∈ {0, . . . ,N − 1},
xk ∈ X , uk ∈ U , ∀k ∈ {0, . . . ,N − 1},
xN ∈ XF , x0 = x(0),

where the cost function and the constraint sets are convex, but the
system dynamics are defined by the nonlinear function
f : Rn × Rd → Rn. We are going to approximate a solution to the
above problem by iteratively linearizing the system dynamics.



Constrained Nonlinear Optimal Control – Linearization (2/2)

Notice that the system dynamics may be linearized around a
state-input pair (x̄ , ū) as follows:

xk+1 = f (xk , uk) ≈ f (x̄ , ū)+∇x f (x̄ , ū)(xk− x̄)+∇uf (x̄ , ū)(uk−ū),

when ||xk − x̄ ||2 ≤ ε and ||uk − ū||2 ≤ ε.

Now define the matrices

A(x̄ , ū) = ∇x f (x̄ , ū),B(x̄ , ū) = ∇uf (x̄ , ū)

and C (x̄ , ū) = f (x̄ , ū)−∇x f (x̄ , ū)x̄ −∇uf (x̄ , ū)ū.

Then we have that

xk+1 = A(x̄ , ū)x + B(x̄ , ū)uk + C (x̄ , ū)
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Sequential Quadratic Program – Preliminaries
Defined the constrained LQR problem around the of states and
inputs sequences U0

j = [uj0, . . . , u
j
N−1] and X j

0 = [x j0, . . . , x
j
N ]:

min
u0→N

N−1∑
k=0

(x>k Qxk + u>k Ruk + α1||xk − x jk ||
2
2 + α2||uk − ujk ||

2
2)

+ x>NQf xN

subject to xk+1 = Akxk + Bkuk + Ck ,∀k ∈ {0, . . . ,N − 1},
xk ∈ X , uk ∈ U , ∀k ∈ {0, . . . ,N − 1},
xN ∈ XF , x0 = x(0),

(10)
where
I the matrices Ak = A(x jk , u

j
k), Bk = B(x jk , u

j
k) and

Ck = C (x jk , u
j
k) are computed linearizing the system dynamics.

I the cost terms α1||xk − x jk ||
2
2 and α2||uk − ujk ||

2
2 are used to

limit the linearization error.



Sequential Quadratic Program – The algorithm
Given an initial guess of states X 0

0 = [x0
0 , . . . , x

0
N ] and inputs

U0
0 = [u0

0 , . . . , u
0
N−1], we defined the following algorithm initialized

for j = 0:

1. Set Ak = A(x jk , u
j
k), Bk = B(x jk , u

j
k) and Ck = A(x jk , u

j
k) for

all k ∈ {0, . . . ,N − 1}.
2. Solve the convex optimization problem (10) and let {x∗k}Nk=0

and {u∗k}
N−1
k=0 be the optimal sequences of states and inputs,

respectively.
3. If ||x∗k − xkk || ≤ ε for all k ∈ {0, . . . ,N} and ||u∗k − ukk || ≤ ε for

all k ∈ {0, . . . ,N − 1} then terminate. Otherwise, set
x j+1
k = x∗k and uj+1

k = u∗k for all k ∈ {0, . . . ,N − 1}, j = j + 1
and go to 1.

I A similar strategy may be used to linearize cost and constraints
I The parameters α1 and α2 may be adapted
I It is not required to solve Problem (10) to optimality
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Optimal Control – The Dynamic Programming Approach

Principle of Optimality

Let x∗0→N = {x∗0 = x0, . . . , x
∗
N} and u∗0→N = {u∗0 , . . . , u∗N−1} be

the optimal sequences of state and input for the FTOCP J∗0→N(x0).
Then we have that the sequences {x∗k , . . . , x∗N} and {u∗k , . . . , u∗N−1}
are optimal for the FTOCP J∗k→N(x∗k ),∀k ∈ {0, . . . ,N − 1}.

Given the optimal value function J∗k→N at time k we can compute

J∗k−1→N(xk−1) = min
uk−1

h(xk−1, uk−1) + J∗k→N(xk)

subject to xk = f (xk−1, uk−1)

g(xk−1, uk−1) ≤ 0.

I J∗k→N is often called the optimal cost-to-go.
I h is often called the stage cost.
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Optimal Control – The Dynamic Programming Approach
Notice that at time N the value function

J∗N→N(xN) =

{
q(xN) if xN ∈ XF

+∞ Otherwise
.

Thus, the optimal value function can be computed recursively as:

J∗N−1→N(xN−1) = min
uN−1

h(xN−1, uN−1) + J∗k→N(xk)

subject to xk = f (xN−1, uN−1)

g(xk−1, uk−1) ≤ 0.
...

J∗0→N(x0) = min
u0

h(x0, u0) + J∗k→N(x1)

subject to x1 = f (x0, u0)

g(x0, u0) ≤ 0.



Summary

We discussed the difference between strategies to solve finite time
optimal control problems:
I the batch approach which is used to compute a sequence of

open-loop actions.
I the dynamic programming approach which is used to compute

a control policy mapping states to actions.

We considered different cases:
I Linear Quadratic Regulator
I Constrained Linear Quadratic Regulator
I General control problem with nonlinear dynamics

Key Message: For problem with continuous state-action spaces
computing an optimal trajectory is “easy”, but computing a policy is
hard when we have constraints !



What is next?

We will show how to compute control policies for constrained
optimal control problems with continuous state-action spaces.

We will focus on guaranteeing that
I State and input constraints are satisfied.
I The closed-loop system is stable.
I The control policy is optimal.

First, we will show the control design when the system dynamics are
known. Then, we will discuss iterative learning strategies which are
similar to the policy iteration approach that we saw in Lecture #1.
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