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Design a policy iteration
algorithm:
» Discuss requirements for
terminal components.
» Learning MPC: Construct
terminal components from
data.
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The MPC problem is not feasible at time step t = 3 when N = 3.
The MPC problem is not feasible at time step t = 1 when N = 4.
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Control Invariant

A set Xr is control invariant for a system xx11 = f(xk, k), if

Vx € Xr, Ju € U such that f(x, u) € XF.
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Recursive Feasibility
Let the terminal set Xr be a control invariant.

A

xat = z(t) °®

ziq =t +1)

E3
® Titon

f(Eiyn®) € XF
/ ° Tt np € Xr a
e
At t+1, the state sequence {x;‘+1|t, ... ,x;‘+N|t, f(X:+N|t7 u)}

* * .
t+1|t’ ey ut+N—1|t7 U} are feaSIble.

and input sequence {u
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Value Function Approximation
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V(x) 5 o/
V(z) = V(f(z,u)) 2 h(z,u)
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Control Lyapunov Function

A function V : Xr — R is control Lyapunov function for the
control invariant set XF, if Vx € Xf

Ju € U such that V(x) > h(x,u) + V(f(x,u)) and f(x,u) € XF.
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Key idea: show that lim;_,o J;(x;) =0
Important: A formal proof of stability is based on Lyapunov theory.
In what follows, we only show that lim;_,..J;(x:) = 0.
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Assume that V/(x) > h(x, u) + V(f(x, u)), h(x,u) > 0,Vx # xg,
h(xg,0) =0 and xg = f(xg,0).
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At t +1, the state sequence {x;; ;- Xy F (X7 e 1)} and
input sequence {u u} are feasible.
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Stability
Assume that V/(x) > h(x, u) + V(f(x, u)), h(x,u) > 0,Vx # xg,
h(xg,0) =0 and xg = f(xg,0).

A

3, = z(t) °

mt*+1|t=$(t+1)5 E

Ti o)t
F(@}y npu) € Xp ® "+
® Tiy Ny € X ®
e

At £+ 1, JE(x) 2 hlxt )+ Jia (xenn).
Therefore, J;,;(xe11) < Jf(x¢) for all x # x,.




Summary

A solution: We have shown when the terminal set Xr is a control
invariant and the terminal cost V/(x) is an approximation to the
value function:

» The MPC problem is feasible at all times

» The closed-loop system converges to the origin as for the
positive definite open-loop cost we have
JE i (x(t+1)) < i (x(t)), Vx(t) & XF (Assuming X and U
contain the origin and are compact or
||| = 00 = Jf(x) — o0).



Summary

A solution: We have shown when the terminal set Xr is a control
invariant and the terminal cost V/(x) is an approximation to the
value function:

» The MPC problem is feasible at all times

» The closed-loop system converges to the origin as for the
positive definite open-loop cost we have
Foa(x(t+1)) < Ji(x(t)), Vx(t) ¢ XF (Assuming X and U
contain the origin and are compact or
[Ix]] = 00 = Ji(x) — o).

Main drawback: Computing the terminal components is
computationally expensive, even for deterministic linear constrained
dynamical systems.
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Drone Regulation Problem

Consider the following finite time optimal control problem:

T-1
J;(x(0)) = min Z h(Xk|¢5 Uk|e) —|—xtT+T‘tht+T‘t
Ut‘t,...,ut+N71‘t k:0

such that  xp 1) = Axyje + Buge,Vk € {t, ..., t+N-1}
Xele € X, ue EUNKk € {t,..., t+N-1}
Xe|t = x(0),xn € X

where h(x,u) = x" @x + u' Ru.
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Design Rules

Assumption:

1. We are given an control invariant O, = {x € R" | Frx < br}
for the LQR policy 7"QR(x), i.e.,

Vx € O we have that Kx € U, (A+ BK)x € O.

2. We are given the matrix P which can be used to compute the
value function associated with the LQR policy 7"QF(x), i.e.,

V(x) = x' Px

(P is computed solving the discrete time Riccati equation)

Result: Using O as terminal constraint and V/(x) as terminal
cost guarantees recursive feasibility and stability.
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Drone Regulation Problem — Region of Attraction

C_1X

[N =4and &7 = {0}

[N =4and X; = O
L )

—e N=4and Xr =X

The MPC is designed setting QF = 10%.
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Estimating Terminal Components from Data

" San Francisco 4

? w.

Dalyciy

In several applications robots are doing the same or similar tasks.
Can we learn safe regions and value function approximations
from data?
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lterative Tasks

Iteratively drive the drone to a goal state xg from an initial
state xs.

Iteration

Time

Roll-out = one execution of the control task.
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Define the sampled safe set as
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Value Function Approximation
Assume a demonstration is given.
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Assume a demonstration is given.

|4

J9=0

T = 0+ hadud)

=+ haad)

J9 =J3+ h(zg,ug).

J3 = J} + h(x3, u3)
i states

zF:w4

xf 9 ?  z), Vi>0



Value Function Approximation
Assume j demonstrations are given.

|4

J9=0

I = I + h(, ug)

JY = J3 + h(zf, u))

J9 = J? + h(x3,u))

J3 = J3 + h(x8,uf)
states

zF:w4

9 9 2?2, Vi>0



Value Function Approximation
Assume j demonstrations are given.

|4

TR =14 =T}

[ ]
=

8
W

states
zy 9 9z, vi0

8
==
8



Value Function Approximation

Assume j demonstrations are given.

states

=0 . -— é
g0 gl 1 0 . ]
TFp =Ty =Ty X3 T3 Ty .’L'g m% ?

z}, Vi >0



Value Function Approximation
Assume j demonstrations are given.

|4

Ji=0

Jy = J3 + h(z},u} states
g -— o -— o
— 0 _ 1 1 j .
TR=T4=24 zi 9 Ty 9 e 2% ), vi>0



Value Function Approximation
Assume j demonstrations are given.

° 1 1 1 1
- TJL = !+ h(al,
J=0 Jy = J; + h(z} ; i 3 -4 + h(z3,u3) | states
_,0_ .1 1 0 1.0 1.0 v
TF=%,=24 3 T3 Ty Ty T7 Ty z), Vj >0



Value Function Approximation
Assume j demonstrations are given.

|4

O T = 7} + hiat,ub)

JE=J}+ (bl Iy = Ji A+ h(eg,ug).
[ ] H

Ji=0 states

— 0 _ 1 1 j .
TR=T4=24 zi 9 Ty 9 e 2% ), vi>0



Value Function Approximation
Assume j demonstrations are given.

Th = TE + h(alud)
® .1 _n 1
1y =Jy + h(z,u1)
JE =} + hizhul ?J%:Ji*-h(ﬂﬁéyué)g ‘
oo sy Joree o s

— 0 _ 1 1 j .
TR=T4=24 zi 9 Ty 9 e 2% ), vi>0



Value Function Approximation
Assume j demonstrations are given.
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Value Function Approximation for j roll-outs
V4(x) = min - JINE
)\’ >0 I 0 t 0

subject to ZJ,::o Dy XML = x, ZJ,::o Y o No=1
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Assumption: A first feasible trajectory at iteration 0 is given

Approximation Procedure

Step 0:
Step 1:

Step 2:
Step 3:

Step 5:

Set iteration counter j=0
Compute the roll-out cost for the
recorded data up to iteration j
Define V7 which interpolates
linearly the roll-out cost
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iteration j+1

Set iteration counter j = j+1. Go
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Approximation Procedure

Step 0: Set iteration counter j=0
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LMPC — A policy iteration strategy

Assumption: A first feasible trajectory at iteration 0 is given

Approximation Procedure

Step 0: Set iteration counter j=0

Step 1: Compute the roll-out cost for the
recorded data up to iteration j

— | Step 2: Define V7 which interpolates
linearly the roll-out cost

Step 3: Run a closed-loop simulation at
iteration j+1

Step 5: Set iteration counter j = j+1. Go
to Step 1

Key Messages:

The value function approximation is defined over a subset of the state
space.

The LMPC policy is used to enlarge the region of which the value
function approximation is defined.
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Algorithm Steps:
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2. (Policy Evaluation). Compute the value function
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value function approximation V/ as terminal cost.
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LMPC — A policy iteration strategy

Algorithm Steps:

1.

Set j = 0. Select a policy 7/ that can complete the task from
xs, run the closed-loop system and store the closed-loop
trajectory x/ = [xé, x{, S

(Policy Evaluation). Compute the value function
approximation V7 and the convex safe set CS’ using data
stored up to iteration j.

(Policy Improvement). Compute the LMPC policy 7/*!
using the convex safe set CS’ as terminal constraint and the
value function approximation V/ as terminal cost.

Run the closed-loop system from xs and store the closed-loop
trajectory xit1 = [T Xt ]

If ¥/t = %/ stop, 7"MPC = 7+l Otherwise, set j = j+ 1
and go to Step 2.
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Drone Regulation Problem — Iteration Cost

Iteration cost = cost of the roll-out = "2 h(xl, )

50.6

50.3 - ‘

Iteration Cost

50 - |

49.9

2 4 6 8 10 12 14 16
Iteration
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LMPC: Properties

Theorem

Let x/ = [x{J ...] be the closed-loop trajectory from the starting
state xs at |teration J. Consider sequence {x/} of closed-loop
trajectories and assume that for ¢ < co we have that

Then we have that
» At each iteration state and input constraints are satisfied.

» The closed-loop cost K, _(xs) is non-increasing, i.e.,

h(xd, ul) = . (xs)

Nk

O—)oo

2 (xs) = 3 ) <
t=0

Il
=)

t

» x¢ = x*, under mild conditions (LICQ holds at each time t)



	Recap of Lecture #3
	MPC Closed-loop Properties
	Recursive Feasibility
	Stability
	Feasibility and Stability – the Linear Case 

	Learning Model Predictive Control
	Iterative Tasks
	Data-based Safe Set
	Data-based Value Function Approximation
	LMPC – A policy iteration strategy


