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Recap of Lecture #3

The MPC problem is not feasible at time step t = 3 when N = 3.
The MPC problem is not feasible at time step t = 1 when N = 4.
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Let the terminal set XF be a control invariant.

At t+1, the state sequence {x∗t+1|t , . . . , x
∗
t+N|t , f (x

∗
t+N|t , u)}

and input sequence {u∗t+1|t , . . . , u
∗
t+N−1|t , u} are feasible.
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Control Lyapunov Function
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control invariant set XF , if

∃u ∈ U such that V (x) ≥ V (f (x , u)) + h(x , u) and f (x , u) ∈ XF .
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Value Function Approximation

Control Lyapunov Function

A function V : XF → R is control Lyapunov function for the
control invariant set XF , if ∀x ∈ XF

∃u ∈ U such that V (x) ≥ h(x , u) + V (f (x , u)) and f (x , u) ∈ XF .
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Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).



Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

Key idea: show that limt→∞ J∗t (xt) = 0
Important: A formal proof of stability is based on Lyapunov theory.
In what follows, we only show that limt→∞J∗t (xt) = 0.
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Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

At t + 1, J∗t (xt) ≥ h(x∗t|t , u
∗
t,t) + J∗t+1(xt+1).

Therefore, J∗t+1(xt+1) < J∗t (xt) for all x 6= xg .



Summary

A solution: We have shown when the terminal set XF is a control
invariant and the terminal cost V (x) is an approximation to the
value function:
I The MPC problem is feasible at all times
I The closed-loop system converges to the origin as for the

positive definite open-loop cost we have
J∗t+1(x(t + 1)) < J∗t (x(t)), ∀x(t) /∈ XF (Assuming X and U
contain the origin and are compact or
||x || → ∞ =⇒ J∗t (x)→∞).

Main drawback: The terminal constraint set affects the region of
attraction of the controller.
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invariant and the terminal cost V (x) is an approximation to the
value function:
I The MPC problem is feasible at all times
I The closed-loop system converges to the origin as for the

positive definite open-loop cost we have
J∗t+1(x(t + 1)) < J∗t (x(t)), ∀x(t) /∈ XF (Assuming X and U
contain the origin and are compact or
||x || → ∞ =⇒ J∗t (x)→∞).

Main drawback: Computing the terminal components is
computationally expensive, even for deterministic linear constrained
dynamical systems.
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Drone Regulation Problem

Consider the following finite time optimal control problem:

J∗t (x(0)) = min
ut|t ,...,ut+N−1|t

T−1∑
k=0

h(xk|t , uk|t) + x>t+T |tPxt+T |t

such that xk+1|t = Axk|t + Buk|t ,∀k ∈ {t, . . . , t+N−1}
xk|t ∈ X , uk|t ∈ U ,∀k ∈ {t, . . . , t+N−1}
xt|t = x(0), xN ∈ XF

where h(x , u) = x>Qx + u>Ru.



Design Rules

Assumption:

1. We are given an control invariant O∞ = {x ∈ Rn | Ff x ≤ bf }
for the LQR policy πLQR(x), i.e.,

∀x ∈ O∞ we have that Kx ∈ U , (A+ BK )x ∈ O∞.

2. We are given the matrix P which can be used to compute the
value function associated with the LQR policy πLQR(x), i.e.,

V (x) = x>Px

(P is computed solving the discrete time Riccati equation)

Result: Using O∞ as terminal constraint and V (x) as terminal
cost guarantees recursive feasibility and stability.
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Estimating Terminal Components from Data

In several applications robots are doing the same or similar tasks.
Can we learn safe regions and value function approximations
from data?
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LMPC – A policy iteration strategy

Algorithm Steps:

1. Set j = 0. Select a policy πj that can complete the task from
xS , run the closed-loop system and store the closed-loop
trajectory xj = [x j0, x

j
1, . . .].

2. (Policy Evaluation). Compute the value function
approximation V j and the convex safe set CS j using data
stored up to iteration j .

3. (Policy Improvement). Compute the LMPC policy πj+1

using the convex safe set CS j as terminal constraint and the
value function approximation V j as terminal cost.

4. Run the closed-loop system from xS and store the closed-loop
trajectory xj+1 = [x j+1

0 , x j+1
1 , . . .]

5. If xj+1 = xj stop, πLMPC = πj+1. Otherwise, set j = j + 1
and go to Step 2.
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Drone Regulation Problem

Can we use as terminal constraint set a safe set?



Drone Regulation Problem – Iteration Cost

Iteration cost = cost of the roll-out =
∑∞

t=0 h(x
j
t , u

j
t)
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LMPC: Properties

Theorem
Let xj = [x j0, x

j
1, . . .] be the closed-loop trajectory from the starting

state xS at iteration j . Consider sequence {xj} of closed-loop
trajectories and assume that for c <∞ we have that

xc = xc+1

Then we have that
I At each iteration state and input constraints are satisfied.
I The closed-loop cost J j0→∞(xS) is non-increasing, i.e.,

J j+1
0→∞(xS) =

∞∑
t=0

h(x j+1
t , uj+1

t ) ≤
∞∑
t=0

h(x jt , u
j
t) = J j0→∞(xS)

I xc = x∗, under mild conditions (LICQ holds at each time t)
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