
CS159 Lecture 4: Learning MPC

Ugo Rosolia

Caltech

Spring 2021

Today’s Class: Learning Model Predictive Control (LMPC)

Goal
Design a policy iteration
algorithm:

I Discuss requirements for
terminal components.

I Learning MPC: Construct
terminal components from
data.

Today’s Class: Learning Model Predictive Control (LMPC)

Goal
Design a policy iteration
algorithm:
I Discuss requirements for

terminal components.

I Learning MPC: Construct
terminal components from
data.

Today’s Class: Learning Model Predictive Control (LMPC)

Goal
Design a policy iteration
algorithm:
I Discuss requirements for

terminal components.
I Learning MPC: Construct

terminal components from
data.

Table of Contents

Recap of Lecture #3

MPC Closed-loop Properties
Recursive Feasibility
Stability
Feasibility and Stability – the Linear Case

Learning Model Predictive Control
Iterative Tasks
Data-based Safe Set
Data-based Value Function Approximation
LMPC – A policy iteration strategy

Recap of Lecture #3

I State

x =

[
p
v

]
=

[
position
velocity

]
I Input u = a = acceleration
I Dynamics[

pk+1
vk+1

]
=

[
1 dt
0 1

] [
pk
vk

]
+

[
0
ak

]
I Cost x>k Qxk + u>k Ruk
I Constraints −5−5

−0.5

 ≤
pkvk
ak

 ≤
 5

5
0.5

Recap of Lecture #3
I State

x =

[
p
v

]
=

[
position
velocity

]

I Input u = a = acceleration
I Dynamics[

pk+1
vk+1

]
=

[
1 dt
0 1

] [
pk
vk

]
+

[
0
ak

]
I Cost x>k Qxk + u>k Ruk
I Constraints −5−5

−0.5

 ≤
pkvk
ak

 ≤
 5

5
0.5

Recap of Lecture #3
I State

x =

[
p
v

]
=

[
position
velocity

]
I Input u = a = acceleration

I Dynamics[
pk+1
vk+1

]
=

[
1 dt
0 1

] [
pk
vk

]
+

[
0
ak

]
I Cost x>k Qxk + u>k Ruk
I Constraints −5−5

−0.5

 ≤
pkvk
ak

 ≤
 5

5
0.5

Recap of Lecture #3
I State

x =

[
p
v

]
=

[
position
velocity

]
I Input u = a = acceleration
I Dynamics[

pk+1
vk+1

]
=

[
1 dt
0 1

] [
pk
vk

]
+

[
0
ak

]

I Cost x>k Qxk + u>k Ruk
I Constraints −5−5

−0.5

 ≤
pkvk
ak

 ≤
 5

5
0.5

Recap of Lecture #3
I State

x =

[
p
v

]
=

[
position
velocity

]
I Input u = a = acceleration
I Dynamics[

pk+1
vk+1

]
=

[
1 dt
0 1

] [
pk
vk

]
+

[
0
ak

]
I Cost x>k Qxk + u>k Ruk

I Constraints −5−5
−0.5

 ≤
pkvk
ak

 ≤
 5

5
0.5

Recap of Lecture #3
I State

x =

[
p
v

]
=

[
position
velocity

]
I Input u = a = acceleration
I Dynamics[

pk+1
vk+1

]
=

[
1 dt
0 1

] [
pk
vk

]
+

[
0
ak

]
I Cost x>k Qxk + u>k Ruk
I Constraints −5−5

−0.5

 ≤
pkvk
ak

 ≤
 5

5
0.5

Recap of Lecture #3

The MPC problem is not feasible at time step t = 3 when N = 3.
The MPC problem is not feasible at time step t = 1 when N = 4.

Recap of Lecture #3
The solution was to set XF = {0}.

Recap of Lecture #3
The solution was to set XF = {0}.

Recap of Lecture #3
The solution was to set XF = {0}.

Recap of Lecture #3
The solution was to set XF = {0}.

Recap of Lecture #3
The solution was to set XF = {0}.

Have we solved the problem?
The solution was to set XF = {0}.

Have we solved the problem?
The solution was to set XF = {0}.

Drone Regulation Problem

Can we use as terminal constraint set a safe set?

Drone Regulation Problem

Can we use as terminal constraint set a safe set?

Drone Regulation Problem

Can we use as terminal constraint set a safe set?

Drone Regulation Problem

Can we use as terminal constraint set a safe set?

Table of Contents

Recap of Lecture #3

MPC Closed-loop Properties
Recursive Feasibility
Stability
Feasibility and Stability – the Linear Case

Learning Model Predictive Control
Iterative Tasks
Data-based Safe Set
Data-based Value Function Approximation
LMPC – A policy iteration strategy

Safe Sets

Control Invariant
A set XF is control invariant for a system xk+1 = f (xk , uk), if

∀x ∈ XF , ∃u ∈ U such that f (x , u) ∈ XF .

Safe Sets

Control Invariant
A set XF is control invariant for a system xk+1 = f (xk , uk), if

∀x ∈ XF , ∃u ∈ U such that f (x , u) ∈ XF .

Safe Sets

Control Invariant
A set XF is control invariant for a system xk+1 = f (xk , uk), if

∀x ∈ XF , ∃u ∈ U such that f (x , u) ∈ XF .

Safe Sets

Control Invariant
A set XF is control invariant for a system xk+1 = f (xk , uk), if

∀x ∈ XF , ∃u ∈ U such that f (x , u) ∈ XF .

Recursive Feasibility
Let the terminal set XF be a control invariant.

Recursive Feasibility
Let the terminal set XF be a control invariant.

Assume that at time t = 0 the MPC problem is feasible.

Recursive Feasibility
Let the terminal set XF be a control invariant.

Let {x∗t|t , . . . , x
∗
t+N|t} and {u

∗
t|t , . . . , u

∗
t+N−1|t} be the optimal

state-input sequences.

Recursive Feasibility
Let the terminal set XF be a control invariant.

Apply u∗t|t to the system.

Recursive Feasibility
Let the terminal set XF be a control invariant.

Recursive Feasibility
Let the terminal set XF be a control invariant.

At t+1, the state sequence {x∗t+1|t , . . . , x
∗
t+N|t , f (x

∗
t+N|t , u)}

and input sequence {u∗t+1|t , . . . , u
∗
t+N−1|t , u} are feasible.

Table of Contents

Recap of Lecture #3

MPC Closed-loop Properties
Recursive Feasibility
Stability
Feasibility and Stability – the Linear Case

Learning Model Predictive Control
Iterative Tasks
Data-based Safe Set
Data-based Value Function Approximation
LMPC – A policy iteration strategy

Value Function Approximation

Control Lyapunov Function

A function V : XF → R is control Lyapunov function for the
control invariant set XF , if

∃u ∈ U such that V (x) ≥ V (f (x , u)) + h(x , u) and f (x , u) ∈ XF .

Value Function Approximation

Control Lyapunov Function

A function V : XF → R is control Lyapunov function for the
control invariant set XF , if

∃u ∈ U such that V (x) ≥ V (f (x , u)) + h(x , u) and f (x , u) ∈ XF .

Value Function Approximation

Control Lyapunov Function

A function V : XF → R is control Lyapunov function for the
control invariant set XF , if

∃u ∈ U such that V (x) ≥ V (f (x , u)) + h(x , u) and f (x , u) ∈ XF .

Value Function Approximation

Control Lyapunov Function

A function V : XF → R is control Lyapunov function for the
control invariant set XF , if

∃u ∈ U such that V (x) ≥ V (f (x , u)) + h(x , u) and f (x , u) ∈ XF .

Value Function Approximation

Control Lyapunov Function

A function V : XF → R is control Lyapunov function for the
control invariant set XF , if

∃u ∈ U such that V (x) ≥ V (f (x , u)) + h(x , u) and f (x , u) ∈ XF .

Value Function Approximation

Control Lyapunov Function

A function V : XF → R is control Lyapunov function for the
control invariant set XF , if ∀x ∈ XF

∃u ∈ U such that V (x) ≥ h(x , u) + V (f (x , u)) and f (x , u) ∈ XF .

Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

Key idea: show that limt→∞ J∗t (xt) = 0
Important: A formal proof of stability is based on Lyapunov theory.
In what follows, we only show that limt→∞J∗t (xt) = 0.

Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

Assume that at time t = 0 the MPC problem is feasible.

Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

Let {x∗t|t , . . . , x
∗
t+N|t} and {u∗t|t , . . . , u

∗
t+N−1|t} be the optimal

state-input sequences.

Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

The cost is J∗t (xt) =
∑t+N−1

k=t h(x∗k|t , u
∗
k,t) + V (x∗t+N|t)

Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

Apply u∗t|t to the system.

Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

At t + 1, the state sequence {x∗t+1|t , . . . , x
∗
t+N|t , f (x

∗
t+N|t , u)} and

input sequence {u∗t+1|t , . . . , u
∗
t+N−1|t , u} are feasible.

Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

Notice that J∗t (xt) =
∑t+N−1

k=t h(x∗k|t , u
∗
k,t) + V (x∗t+N|t) asasas

sdfsdf sds ds sdsds

Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

Notice that J∗t (xt) =
∑t+N−1

k=t h(x∗k|t , u
∗
k,t) + V (x∗t+N|t) ≥

h(x∗t|t , u
∗
t,t)+

∑t+N−1
k=t+1 h(x∗k|t , u

∗
k,t)+h(x∗t+N|t , u)+V (f (x∗t+N|t , u))

Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

At t + 1, J∗t (xt) ≥ h(x∗t|t , u
∗
t,t) + J∗t+1(xt+1).

Stability
Assume that V (x) ≥ h(x , u) + V (f (x , u)), h(x , u) > 0,∀x 6= xg ,
h(xg , 0) = 0 and xg = f (xg , 0).

At t + 1, J∗t (xt) ≥ h(x∗t|t , u
∗
t,t) + J∗t+1(xt+1).

Therefore, J∗t+1(xt+1) < J∗t (xt) for all x 6= xg .

Summary

A solution: We have shown when the terminal set XF is a control
invariant and the terminal cost V (x) is an approximation to the
value function:
I The MPC problem is feasible at all times
I The closed-loop system converges to the origin as for the

positive definite open-loop cost we have
J∗t+1(x(t + 1)) < J∗t (x(t)), ∀x(t) /∈ XF (Assuming X and U
contain the origin and are compact or
||x || → ∞ =⇒ J∗t (x)→∞).

Main drawback: The terminal constraint set affects the region of
attraction of the controller.

Summary
A solution: We have shown when the terminal set XF is a control
invariant and the terminal cost V (x) is an approximation to the
value function:
I The MPC problem is feasible at all times
I The closed-loop system converges to the origin as for the

positive definite open-loop cost we have
J∗t+1(x(t + 1)) < J∗t (x(t)), ∀x(t) /∈ XF (Assuming X and U
contain the origin and are compact or
||x || → ∞ =⇒ J∗t (x)→∞).

Main drawback: Computing the terminal components is
computationally expensive, even for deterministic linear constrained
dynamical systems.

Table of Contents

Recap of Lecture #3

MPC Closed-loop Properties
Recursive Feasibility
Stability
Feasibility and Stability – the Linear Case

Learning Model Predictive Control
Iterative Tasks
Data-based Safe Set
Data-based Value Function Approximation
LMPC – A policy iteration strategy

Drone Regulation Problem

Can we use as terminal constraint set a safe set?

Drone Regulation Problem

Consider the following finite time optimal control problem:

J∗t (x(0)) = min
ut|t ,...,ut+N−1|t

T−1∑
k=0

h(xk|t , uk|t) + x>t+T |tPxt+T |t

such that xk+1|t = Axk|t + Buk|t ,∀k ∈ {t, . . . , t+N−1}
xk|t ∈ X , uk|t ∈ U ,∀k ∈ {t, . . . , t+N−1}
xt|t = x(0), xN ∈ XF

where h(x , u) = x>Qx + u>Ru.

Design Rules

Assumption:

1. We are given an control invariant O∞ = {x ∈ Rn | Ff x ≤ bf }
for the LQR policy πLQR(x), i.e.,

∀x ∈ O∞ we have that Kx ∈ U , (A+ BK)x ∈ O∞.

2. We are given the matrix P which can be used to compute the
value function associated with the LQR policy πLQR(x), i.e.,

V (x) = x>Px

(P is computed solving the discrete time Riccati equation)

Result: Using O∞ as terminal constraint and V (x) as terminal
cost guarantees recursive feasibility and stability.

Design Rules

Assumption:
1. We are given an control invariant O∞ = {x ∈ Rn | Ff x ≤ bf }

for the LQR policy πLQR(x), i.e.,

∀x ∈ O∞ we have that Kx ∈ U , (A+ BK)x ∈ O∞.

2. We are given the matrix P which can be used to compute the
value function associated with the LQR policy πLQR(x), i.e.,

V (x) = x>Px

(P is computed solving the discrete time Riccati equation)

Result: Using O∞ as terminal constraint and V (x) as terminal
cost guarantees recursive feasibility and stability.

Design Rules

Assumption:
1. We are given an control invariant O∞ = {x ∈ Rn | Ff x ≤ bf }

for the LQR policy πLQR(x), i.e.,

∀x ∈ O∞ we have that Kx ∈ U , (A+ BK)x ∈ O∞.

2. We are given the matrix P which can be used to compute the
value function associated with the LQR policy πLQR(x), i.e.,

V (x) = x>Px

(P is computed solving the discrete time Riccati equation)

Result: Using O∞ as terminal constraint and V (x) as terminal
cost guarantees recursive feasibility and stability.

Design Rules

Assumption:
1. We are given an control invariant O∞ = {x ∈ Rn | Ff x ≤ bf }

for the LQR policy πLQR(x), i.e.,

∀x ∈ O∞ we have that Kx ∈ U , (A+ BK)x ∈ O∞.

2. We are given the matrix P which can be used to compute the
value function associated with the LQR policy πLQR(x), i.e.,

V (x) = x>Px

(P is computed solving the discrete time Riccati equation)

Result: Using O∞ as terminal constraint and V (x) as terminal
cost guarantees recursive feasibility and stability.

Drone Regulation Problem

The MPC is designed setting QF = 104.

Drone Regulation Problem – Region of Attraction

The MPC is designed setting QF = 104.

Drone Regulation Problem – Region of Attraction

Drone Regulation Problem – Region of Attraction

The MPC is designed setting QF = 104.

Table of Contents

Recap of Lecture #3

MPC Closed-loop Properties
Recursive Feasibility
Stability
Feasibility and Stability – the Linear Case

Learning Model Predictive Control
Iterative Tasks
Data-based Safe Set
Data-based Value Function Approximation
LMPC – A policy iteration strategy

Estimating Terminal Components from Data

In several applications robots are doing the same or similar tasks.
Can we learn safe regions and value function approximations
from data?

Iterative Tasks

Iteratively drive the drone to a goal state xF from an initial
state xS .

Roll-out = one execution of the control task.

Iterative Tasks

Iteratively drive the drone to a goal state xF from an initial
state xS .

Roll-out = one execution of the control task.

Iterative Tasks

Iteratively drive the drone to a goal state xF from an initial
state xS .

Roll-out = one execution of the control task.

Iterative Tasks

Iteratively drive the drone to a goal state xF from an initial
state xS .

Roll-out = one execution of the control task.

Iterative Tasks

Iteratively drive the drone to a goal state xF from an initial
state xS .

Roll-out = one execution of the control task.

Table of Contents

Recap of Lecture #3

MPC Closed-loop Properties
Recursive Feasibility
Stability
Feasibility and Stability – the Linear Case

Learning Model Predictive Control
Iterative Tasks
Data-based Safe Set
Data-based Value Function Approximation
LMPC – A policy iteration strategy

Safe Set
Assume a demonstration is given.

Safe Set for j roll-outs

Define the sampled safe set as

SS j = set of stored data = ∪ji=0 ∪
∞
t=0 x

j
t

Safe Set
Assume a demonstration is given.

Safe Set for j roll-outs

Define the sampled safe set as

SS j = set of stored data = ∪ji=0 ∪
∞
t=0 x

j
t

Safe Set
Assume a demonstration is given.

Safe Set for j roll-outs

Define the sampled safe set as

SS j = set of stored data = ∪ji=0 ∪
∞
t=0 x

j
t

Safe Set
Assume j demonstrations are given.

Safe Set for j roll-outs

Define the sampled safe set as

SS j = set of stored data = ∪ji=0 ∪
∞
t=0 x

j
t

Safe Set
Assume j demonstrations are given.

Safe Set for j roll-outs

Define the sampled safe set as

SS j = set of stored data = ∪ji=0 ∪
∞
t=0 x

j
t

Safe Set
Assume j demonstrations are given.

Convex Safe Set for j roll-outs

Define the sampled safe set as

CS j = conv(set of stored data) = conv(∪ji=0 ∪
∞
t=0 x

j
t)

Safe Set
Assume j demonstrations are given.

Convex Safe Set for j roll-outs

Define the sampled safe set as

CS j = conv(set of stored data) = conv(∪ji=0 ∪
∞
t=0 x

j
t)

Safe Set
Assume j demonstrations are given.

Concex Safe Set for j roll-outs

Define the sampled safe set as

CS j = conv(set of stored data) = conv(∪ji=0 ∪
∞
t=0 x

j
t)

Table of Contents

Recap of Lecture #3

MPC Closed-loop Properties
Recursive Feasibility
Stability
Feasibility and Stability – the Linear Case

Learning Model Predictive Control
Iterative Tasks
Data-based Safe Set
Data-based Value Function Approximation
LMPC – A policy iteration strategy

Value Function Approximation
Assume a demonstration is given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume a demonstration is given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume a demonstration is given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume a demonstration is given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume a demonstration is given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume a demonstration is given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume j demonstrations are given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume j demonstrations are given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume j demonstrations are given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume j demonstrations are given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume j demonstrations are given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume j demonstrations are given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume j demonstrations are given.

Value Function Approximation for j roll-outs

Q j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Value Function Approximation
Assume j demonstrations are given.

Value Function Approximation for j roll-outs

V j(x) = min
λit≥0

∑j
i=0
∑∞

t=0 J
i
tλ

i
t

subject to
∑j

i=0
∑∞

t=0 x
i
tλ

i
t = x ,

∑j
i=0
∑∞

t=0 λ
i
t = 1

Table of Contents

Recap of Lecture #3

MPC Closed-loop Properties
Recursive Feasibility
Stability
Feasibility and Stability – the Linear Case

Learning Model Predictive Control
Iterative Tasks
Data-based Safe Set
Data-based Value Function Approximation
LMPC – A policy iteration strategy

Drone Regulation Problem – A policy iteration strategy

LMPC – A policy iteration strategy

Key Messages:
The value function approximation is defined over a subset of the state
space.
The LMPC policy is used to enlarge the region of which the value
function approximation is defined.

LMPC – A policy iteration strategy

Key Messages:
The value function approximation is defined over a subset of the state
space.
The LMPC policy is used to enlarge the region of which the value
function approximation is defined.

LMPC – A policy iteration strategy

Key Messages:
The value function approximation is defined over a subset of the state
space.
The LMPC policy is used to enlarge the region of which the value
function approximation is defined.

LMPC – A policy iteration strategy

Key Messages:
The value function approximation is defined over a subset of the state
space.
The LMPC policy is used to enlarge the region of which the value
function approximation is defined.

LMPC – A policy iteration strategy

Key Messages:
The value function approximation is defined over a subset of the state
space.
The LMPC policy is used to enlarge the region of which the value
function approximation is defined.

LMPC – A policy iteration strategy

Key Messages:
The value function approximation is defined over a subset of the state
space.
The LMPC policy is used to enlarge the region of which the value
function approximation is defined.

LMPC – A policy iteration strategy

Key Messages:
The value function approximation is defined over a subset of the state
space.
The LMPC policy is used to enlarge the region of which the value
function approximation is defined.

LMPC – A policy iteration strategy

Key Messages:
The value function approximation is defined over a subset of the state
space.
The LMPC policy is used to enlarge the region of which the value
function approximation is defined.

LMPC – A policy iteration strategy

Key Messages:
The value function approximation is defined over a subset of the state
space.
The LMPC policy is used to enlarge the region of which the value
function approximation is defined.

LMPC – A policy iteration strategy

Algorithm Steps:

1. Set j = 0. Select a policy πj that can complete the task from
xS , run the closed-loop system and store the closed-loop
trajectory xj = [x j0, x

j
1, . . .].

2. (Policy Evaluation). Compute the value function
approximation V j and the convex safe set CS j using data
stored up to iteration j .

3. (Policy Improvement). Compute the LMPC policy πj+1

using the convex safe set CS j as terminal constraint and the
value function approximation V j as terminal cost.

4. Run the closed-loop system from xS and store the closed-loop
trajectory xj+1 = [x j+1

0 , x j+1
1 , . . .]

5. If xj+1 = xj stop, πLMPC = πj+1. Otherwise, set j = j + 1
and go to Step 2.

LMPC – A policy iteration strategy

Algorithm Steps:

1. Set j = 0. Select a policy πj that can complete the task from
xS , run the closed-loop system and store the closed-loop
trajectory xj = [x j0, x

j
1, . . .].

2. (Policy Evaluation). Compute the value function
approximation V j and the convex safe set CS j using data
stored up to iteration j .

3. (Policy Improvement). Compute the LMPC policy πj+1

using the convex safe set CS j as terminal constraint and the
value function approximation V j as terminal cost.

4. Run the closed-loop system from xS and store the closed-loop
trajectory xj+1 = [x j+1

0 , x j+1
1 , . . .]

5. If xj+1 = xj stop, πLMPC = πj+1. Otherwise, set j = j + 1
and go to Step 2.

LMPC – A policy iteration strategy

Algorithm Steps:

1. Set j = 0. Select a policy πj that can complete the task from
xS , run the closed-loop system and store the closed-loop
trajectory xj = [x j0, x

j
1, . . .].

2. (Policy Evaluation). Compute the value function
approximation V j and the convex safe set CS j using data
stored up to iteration j .

3. (Policy Improvement). Compute the LMPC policy πj+1

using the convex safe set CS j as terminal constraint and the
value function approximation V j as terminal cost.

4. Run the closed-loop system from xS and store the closed-loop
trajectory xj+1 = [x j+1

0 , x j+1
1 , . . .]

5. If xj+1 = xj stop, πLMPC = πj+1. Otherwise, set j = j + 1
and go to Step 2.

LMPC – A policy iteration strategy

Algorithm Steps:

1. Set j = 0. Select a policy πj that can complete the task from
xS , run the closed-loop system and store the closed-loop
trajectory xj = [x j0, x

j
1, . . .].

2. (Policy Evaluation). Compute the value function
approximation V j and the convex safe set CS j using data
stored up to iteration j .

3. (Policy Improvement). Compute the LMPC policy πj+1

using the convex safe set CS j as terminal constraint and the
value function approximation V j as terminal cost.

4. Run the closed-loop system from xS and store the closed-loop
trajectory xj+1 = [x j+1

0 , x j+1
1 , . . .]

5. If xj+1 = xj stop, πLMPC = πj+1. Otherwise, set j = j + 1
and go to Step 2.

LMPC – A policy iteration strategy

Algorithm Steps:

1. Set j = 0. Select a policy πj that can complete the task from
xS , run the closed-loop system and store the closed-loop
trajectory xj = [x j0, x

j
1, . . .].

2. (Policy Evaluation). Compute the value function
approximation V j and the convex safe set CS j using data
stored up to iteration j .

3. (Policy Improvement). Compute the LMPC policy πj+1

using the convex safe set CS j as terminal constraint and the
value function approximation V j as terminal cost.

4. Run the closed-loop system from xS and store the closed-loop
trajectory xj+1 = [x j+1

0 , x j+1
1 , . . .]

5. If xj+1 = xj stop, πLMPC = πj+1. Otherwise, set j = j + 1
and go to Step 2.

Drone Regulation Problem

Can we use as terminal constraint set a safe set?

Drone Regulation Problem – Iteration Cost

Iteration cost = cost of the roll-out =
∑∞

t=0 h(x
j
t , u

j
t)

Drone Regulation Problem – Region of Attraction

Drone Regulation Problem – Region of Attraction

Drone Regulation Problem – Region of Attraction

Drone Regulation Problem – Region of Attraction

Drone Regulation Problem – Region of Attraction

Drone Regulation Problem – Region of Attraction

Drone Regulation Problem – Region of Attraction

LMPC: Properties

Theorem
Let xj = [x j0, x

j
1, . . .] be the closed-loop trajectory from the starting

state xS at iteration j . Consider sequence {xj} of closed-loop
trajectories and assume that for c <∞ we have that

xc = xc+1

Then we have that
I At each iteration state and input constraints are satisfied.
I The closed-loop cost J j0→∞(xS) is non-increasing, i.e.,

J j+1
0→∞(xS) =

∞∑
t=0

h(x j+1
t , uj+1

t) ≤
∞∑
t=0

h(x jt , u
j
t) = J j0→∞(xS)

I xc = x∗, under mild conditions (LICQ holds at each time t)

	Recap of Lecture #3
	MPC Closed-loop Properties
	Recursive Feasibility
	Stability
	Feasibility and Stability – the Linear Case

	Learning Model Predictive Control
	Iterative Tasks
	Data-based Safe Set
	Data-based Value Function Approximation
	LMPC – A policy iteration strategy

