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Polyhedra and polytopes

Polyhedra and polytopes

A polyhedron is the intersection of a finite number of closed
halfspaces:

Z = {z | a>1 z ≤ b1, a
>
2 z ≤ b2, . . . , a

>
mz ≤ bm}

= {z |Az ≤ b}

where A := [a1, a2, . . . , am]> and b := [b1, b2, . . . , bm]>.

A polytope is a bounded polyhedron.

Polyhedra and polytopes are always convex.
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Polyhedra Representations
I An H-polyhedron P in Rn denotes an intersection of a finite

set of closed halfspaces in Rn:

P = {x ∈ Rn : Ax ≤ b}

I A V-polytope P in Rn is defined as

P = conv(V ) = {v ∈ Rn|∃λ ∈ Rk , v = Vλ, 1>k λ = 1, λ ≥ 0}

for some V = [V1, . . . ,Vk ] ∈ Rn×k and the vector of
ones 1k ∈ Rk .

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1

x
2

H-representation

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1

x
2

V-representation



Table of Contents

Polyhedra and Polytopes
Set Definitions
Operations

Reach and Pre Sets
Reach Sets Definition
Pre Sets Definition

Invariant and Control Invariant Sets
Invariant Sets
Control Invariant Sets

MPC Closed-loop Properties
Recursive Feasibility
Stability
Feasibility and Stability – the Linear Case



Basic Operations on Polytopes
I Given two sets A ⊂ Rn and B ⊂ Rn , the Minkowski sum of A

and B is defined as

A⊕ B = {x + y ∈ Rn | x ∈ A, y ∈ B}

Furthermore, given the V -representations
A = conv([va1 , . . . , v

a
a ]) and B = conv([vb1 , . . . , v

b
b ]) the

Minkowski sum

A⊕ B = A = conv([vab1,1, . . . , v
ab
a,b]), where vabij = vai + vbj .



Basic Operations on Polytopes
I Projection Given a polytope
P = {[x ′y ′]′ ∈ Rn+m : Axx + Ayy ≤ b} ⊂ Rn+m the
projection onto the x-space Rn is defined as

projx(P) := {x ∈ Rn | ∃y ∈ Rm : Axx + Ayy ≤ b}.
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Reachable Set

Reachable Set for a policy π

Consider the discrete-time system xk+1 = f (xk , uk) and the state
constraint set X . The Reachable Set for a policy π from the set S
is defined as

Reachπ(S) , {x ∈ Rn | ∃ x0 ∈ S s.t. x = f (x0, π(x0))}

Reachable Set for the policy π

Consider the discrete-time system xk+1 = f (xk , uk), the state
constraint set X and input constraint set U . The Reachable Set
from the set S is defined as

Reach(S) , {x ∈ Rn | ∃ x0 ∈ S, ∃ u0 ∈ U s.t. x = f (x0, u0)}
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Reachable Set – Example
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Reach Set Computation

I Consider the polyhedron X = conv(Vx) and the linear discrete
time system

x(t + 1) = Ax(t) + Bu(t)

where the input u ∈ U = conv(Vu) and define

A ◦ X = conv(AVx).

I Then for the policy π(x) = Kx

Reachπ(X ) = (A− BK ) ◦ X

and

Reach(X ) = {x̄ + ū | x̄ ∈ A ◦ Vx , ū ∈ B ◦ U}
= (A ◦ X )⊕ (B ◦ U).



N-Step Reachable Sets
Definition (N-Step Reachable Set RN(S))
Consider the discrete-time system xk+1 = f (xk , uk), the state
constraint set X and input constraint set U . For a given initial set
S ⊆ X , the N-step reachable set RN(S) is

Ri+1(S) , Reach(Ri (S)), R0(S) = S, i = 0, . . . ,N − 1

By definition all states x0 ∈ S will evolve to the N-step reachable
set RN(S) in N time steps.
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Pre Set Definition

Pre Set for the policy π

Consider the discrete-time system xk+1 = f (xk , uk) and the state
constraint set X . The Pre Set for a policy π from the set S is
defined as

Preπ(S) , {x ∈ Rn | f (x , π(x)) ∈ S}

Pre Set for the policy π

Consider the discrete-time system xk+1 = f (xk , uk), the state
constraint set X and input constraint set U . The Pre Set from the
set S is defined as

Preπ(S) , {x ∈ Rn | ∃u ∈ U , f (x , u) ∈ S}
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Pre Set Computation - Autonomous Systems

I Consider the polyhedron X = {x | Hxx ≤ hx} and the linear
discrete time autonomous system

x(t + 1) = Ax(t) + Bu(t)

I Then
Pre(S) = {x | HAx ≤ h}



Pre Set Computation - System with Inputs
I Consider the polyhedron X = {x | Hxx ≤ hx} and the linear

discrete time system

x(t + 1) = Ax(t) + Bu(t)

where the input u ∈ U = {u | Huu ≤ hu} and define

A ◦ X = conv(AVx).

I Then

Pre(S) =

{
x ∈ Rn | ∃u ∈ R |

[
HxA HxB
0 Hu

](
x
u

)
≤
[
hx
hu

]}
which is the projection onto the x-space (with dimension Rn)
of the polyhedron

T :=

{[
HA HB
0 Hu

](
x
u

)
≤
[
h
hu

]}
.



N-Step Controllable Sets
N-Step Controllable Set KN(S)
For a given target set S ⊆ X , the N-step controllable set KN(S) is
defined as:

KN(S) , Pre(KN−1(S)) ∩ X , K0(S) = S, N ∈ N+.

By definition all states x0 ∈ KN(S) can be driven, through a
time-varying control law, to the target set O in N steps, while
satisfying input and state constraints.
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Maximal Controllable Set

Maximal Controllable Set K∞(S)
For a given target set O ⊆ X , the maximal controllable set K∞(S)
for the system x(t + 1) = f (x(t), u(t)) subject to the
constraints x(t) ∈ X , u(t) ∈ U is the union of all N-step
controllable sets contained in X (N ∈ N).

As we will be discussing, Maximal Controllable Set characterize the
MPC region of attraction. However, computing these set may be
challenging as these sets are computed using projections.
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Invariant Sets
Invariant sets
I are computed for autonomous systems
I for a given feedback controller u = π(x), will contain the

evolution of the system for all times.

Positive Invariant Set
A set O ⊆ X is said to be a positive invariant set for the
autonomous system x(t + 1) = f (x(t), π(x(t)) subject to the
constraints x(t) ∈ X , if

x(0) ∈ O ⇒ x(t) ∈ O, ∀t ∈ N+

Maximal Positive Invariant Set O∞
The set O∞ is the maximal invariant set if O∞ is invariant and
O∞ contains all the invariant sets contained in X .
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Invariant Sets

Theorem (Geometric condition for invariance)

A set O is a positive invariant set if and only if O ⊆ Preπ(O)

NOTE: O ⊆ Preπ(O)⇔ Preπ(O) ∩ O = O

Algorithm

Input: System model f , control policy π, constraint set X
Output: O∞
1. Let Ω0 = X
2. Let Ωk+1 = Preπ(Ωk) ∩ Ωk

3. If Ωk+1 = Ωk then Ω∞ ← Ωk+1
4. If else go to 2

The algorithm generates the set sequence {Ωk} satisfying
Ωk+1 ⊆ Ωk ,∀k ∈ N and it terminates when Ωk+1 = Ωk so that Ωk

is the maximal positive invariant set O∞ for x(t + 1) = fa(x(t)).
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Control Invariant Sets
Control invariant sets
I are computed for systems subject to external inputs
I provide the set of initial states for which there exists a

controller such that the system constraints are never violated.

Control Invariant Set
A set C ⊆ X is said to be a control invariant set if

x(t) ∈ C ⇒ ∃u(t) ∈ U such that f (x(t), u(t)) ∈ C, ∀t ∈ N+

Maximal Control Invariant Set
The set C∞ is said to be the maximal control invariant set for the
system x(t + 1) = f (x(t), u(t)) subject to the constraints in
x(t) ∈ X , u(t) ∈ U , if it is control invariant and contains all
control invariant sets contained in X .
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Control Invariant Sets

Same geometric condition for control invariants holds: C is a
control invariant set if and only if

C ⊆ Pre(C)

Algorithm

Input: System model f , constraint sets X and U
Output: O∞
1. Let Ω0 = X
2. Let Ωk+1 = Pre(Ωk) ∩ Ωk

3. If Ωk+1 = Ωk then C∞ ← Ωk+1
4. If else go to 2

The algorithm generates the set sequence {Ωk} satisfying
Ωk+1 ⊆ Ωk ,∀k ∈ N and it terminates if Ωk+1 = Ωk so that Ωk is
the maximal control invariant set C∞ for the constrained system.



Invariant Sets and Control Invariant Sets

I The set O∞ (C∞) is finitely determined if and only if
∃ i ∈ N such that Ωi+1 = Ωi .

I The smallest element i ∈ N such that Ωi+1 = Ωi is called the
determinedness index.

I For all states contained in the maximal control invariant set
C∞ there exists a control law, such that the system constraints
are never violated.
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Loss of Feasibility

MPC policies compute control actions by solving finite time optimal
control problems over shifted time windows:

J∗t (x(0)) = min
ut|t ,...,ut+N−1|t

T−1∑
k=0

h(xk|t , uk|t) + V (xt+T |t)

such that xk+1|t = Axk|t + Buk|t ,∀k ∈ {t, . . . , t+N−1}
xk|t ∈ X , uk|t ∈ U ,∀k ∈ {t, . . . , t+N−1}
xt|t = x(0), xN ∈ XF

Solution: The terminal cost V (xt+T |t) and terminal constraint
XF , often referred to as terminal components, should approximate
the tail of cost and constraints beyond the prediction horizon.



Recursive Feasibility

Let the terminal set XF be control invariant. Next, we show by
induction that the terminal set XF guarantees that the controller is
recursively feasible.

I At time step t assume that the MPC
problem is feasible and let
{u∗t|t , . . . , u

∗
t+N−1|t} and {x

∗
t|t , . . . , x

∗
t+N|t}

be the optimal sequences of states and
actions.

I At the next time step t + 1, we have that
x(t + 1) = x∗t+1|t .

I Therefore, at the next time step t + 1 the
sequences {u∗t+1|t , . . . , u

∗
t+N−1|t , 0} and

{x∗t+1|t , . . . , x
∗
t+N|t , 0} are feasible, as

x∗t+N|t = 0 ∈ XF and the origin is an
unforced equilibrium point.
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Recursive Feasibility

Let the terminal set XF be control invariant. Next, we show by
induction that the terminal set XF guarantees that the controller is
recursively feasible.

I At time step t assume that the MPC
problem is feasible and let
{u∗t|t , . . . , u

∗
t+N−1|t} and {x

∗
t|t , . . . , x

∗
t+N|t}

be the optimal sequences of states and
actions.

I At the next time step t + 1, we have that
x(t + 1) = x∗t+1|t .

I As x∗t+N|t ∈ XF there exists ū ∈ U such
that x̄ = f (x∗t+N|t , ū) ∈ XF . Thus, at the
next time step t + 1 the sequences
{u∗t+1|t , . . . , u

∗
t+N−1|t , ū} and

{x∗t+1|t , . . . , x
∗
t+N|t , x̄} are feasible.



Stability – Assumptions
Let the following assumptions hold
I The stage cost satisfies

h(x , u) = 0∀x ∈ X \ {0}, ∀u ∈ U \ {0}

and h(0, 0) > 0.
I The terminal set XF is a control invariant set and the state

and input constraint sets X and U are compact.
I The terminal cost function V : Rn → R is a control Lyapunov

function for the set XF , i.e.,

∀x ∈ XF , ∃u ∈ U such that V (f (x , u))− V (x) ≥ −h(x , u)

and f (x , u) ∈ XF .

Next, we show by induction that the open-loop cost J∗t (x(t)) is a
Lyapunov function for the closed-loop system, i.e.,

J∗t+1(x(t + 1)) < J∗t (x(t)),∀x(t) ∈ X \ {0}.
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Stability – Proof (1/2)

I At time step t, assume that the MPC problem is feasible and
let {u∗t|t , . . . , u

∗
t+N−1|t} and {x

∗
t|t , . . . , x

∗
t+N|t} be the optimal

sequences of states and actions. Then the open-loop cost is

J∗t (x(t)) =
N−1∑
k=t

h(x∗k|t , u
∗
k|t) + V (x∗t+N|t)

≥
N−1∑
k=t

h(x∗k|t , u
∗
k|t) + h(x∗t+N|t , ū) + V (f (x∗t+N|t , ū))

for ū ∈ U such that f (x∗t+N|t , ū).



Stability – Proof (2/2)

I At the next time step t + 1,

J̄ =
N−1∑

k=t+1

h(x∗k|t , u
∗
k|t) + h(x∗t+N|t , ū) + V (f (x∗t+N|t , ū))

is the cost associated with the feasible sequence of inputs
{u∗t+1|t , . . . , u

∗
t+N−1|t , ū}, thus

J∗t (x(t)) = h(x∗k|t , u
∗
k|t) + J̄ ≥ h(x∗t|t , u

∗
t|t) + J∗t+1(x(t + 1)).

I Concluding, the open-loop cost satisfies

J∗t+1(x(t + 1))− J∗t (x(t)) ≤ −h(x(t), u(t))

as x∗t|t = x(t) and u∗t|t = x(t), and it is a Lyapunov function
for the closed-loop system.
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Constrained Linear Quadratic Regulator

Consider the following finite time optimal control problem:

J∗t (x(0)) = min
ut|t ,...,ut+N−1|t

T−1∑
k=0

h(xk|t , uk|t) + x>t+T |tPxt+T |t

such that xk+1|t = Axk|t + Buk|t ,∀k ∈ {t, . . . , t+N−1}
xk|t ∈ X , uk|t ∈ U ,∀k ∈ {t, . . . , t+N−1}
xt|t = x(0), xN ∈ XF

where h(x , u) = x>Qx + u>Ru.

Next, we discuss how to construct the terminal cost V (x) = x>Px
and the terminal set XF to guarantee recursive feasibility and
closed-loop stability.



Design Rules
1. Design unconstrained LQR control law

K∞ = (B ′P∞B + R)−1B ′P∞A

where P∞ is the solution to the discrete-time algebraic Riccati
equation:

P∞ = A′P∞A + Q − A′P∞B(B ′P∞B + R)−1B ′P∞A

2. Choose the terminal weight P = P∞

3. Choose the terminal set XF to be the maximum invariant set
for the closed-loop system xk+1 = (A− BK∞)xk :

xk+1 = (A− BK∞)xk ∈ XF , for all xk ∈ XF

All state and input constraints are satisfied in XF :

XF ⊆ X , F∞xk ∈ U , for all xk ∈ XF



Stability and Feasibility Proof

By construction all the Assumptions of the required to guarantee
recursive feasibility and stability are verified:
1. The stage cost is a positive definite function
2. By construction the terminal set is invariant under the local

control law v = −K∞x

3. Terminal cost is a continuous Lyapunov function in the
terminal set XF and satisfies:

x>k+1Pxk+1 − x>k Pxk

= x ′k(−P∞ + A′P∞A− A′P∞B(B ′P∞B + R)−1B ′P∞A)xk

= −x ′kQxk



Summary of Safety and Stability Properties

Key Message: When the MPC terminal components are not
designed correctly, the closed-loop system may violate safety
constraints and convergence to the goal state/set is not guaranteed

Solution: We have shown that given a terminal set set XF which is
control invariant, and a terminal cost function V (x) which is a
control Lyapunov function.
I The MPC problem is feasible at all times
I The closed-loop system is stable as for the positive definite

open-loop cost we have J∗t+1(x(t + 1)) < J∗t (x(t)),∀x(t) /∈ XF

Main drawback: These terminal components are hard to compute
even for linear constrained deterministic systems.
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