CS159 Lecture 4 Supplementary Material: Synthesizing Terminal Components for MPC

Ugo Rosolia

Caltech

Spring 2021

Adapted from Berkeley ME231A Original slide set by F. Borrelli, M. Morari, C. Jones

Table of Contents

Polyhedra and Polytopes

Set Definitions Operations

Reach and Pre Sets

Reach Sets Definition Pre Sets Definition

Invariant and Control Invariant Sets

Invariant Sets Control Invariant Sets

MPC Closed-loop Properties

Recursive Feasibility Stability Feasibility and Stability – the Linear Case

Table of Contents

Polyhedra and Polytopes Set Definitions

Operations

Reach and Pre Sets

Reach Sets Definition Pre Sets Definition

Invariant and Control Invariant Sets

Invariant Sets Control Invariant Sets

MPC Closed-loop Properties

Recursive Feasibility

Stability

Feasibility and Stability – the Linear Case

Polyhedra and polytopes

Polyhedra and polytopes

A polyhedron is the intersection of a *finite* number of closed halfspaces:

$$Z = \{z \mid a_1^\top z \le b_1, a_2^\top z \le b_2, \dots, a_m^\top z \le b_m\}$$
$$= \{z \mid Az \le b\}$$

where $A := [a_1, a_2, ..., a_m]^{\top}$ and $b := [b_1, b_2, ..., b_m]^{\top}$.

A polytope is a *bounded* polyhedron.

An (unbounded) polyhedron

Polyhedra Representations

An *H*-polyhedron *P* in ℝⁿ denotes an intersection of a finite set of closed halfspaces in ℝⁿ:

$$\mathcal{P} = \{x \in \mathbb{R}^n : Ax \le b\}$$

• A \mathcal{V} -polytope \mathcal{P} in \mathbb{R}^n is defined as

$$\mathcal{P} = \operatorname{conv}(V) = \{ v \in \mathbb{R}^n | \exists \lambda \in \mathbb{R}^k, v = V\lambda, 1_k^\top \lambda = 1, \lambda \ge 0 \}$$

for some $V = [V_1, \dots, V_k] \in \mathbb{R}^{n \times k}$ and the vector of ones $1_k \in \mathbb{R}^k$.

Table of Contents

Polyhedra and Polytopes Set Definitions Operations

Reach and Pre Sets

Reach Sets Definition Pre Sets Definition

Invariant and Control Invariant Sets

Invariant Sets Control Invariant Sets

MPC Closed-loop Properties

Recursive Feasibility

Stability

Feasibility and Stability – the Linear Case

Basic Operations on Polytopes

• Given two sets $\mathcal{A} \subset \mathbb{R}^n$ and $\mathcal{B} \subset \mathbb{R}^n$, the Minkowski sum of \mathcal{A} and \mathcal{B} is defined as

$$\mathcal{A} \oplus \mathcal{B} = \{x + y \in \mathbb{R}^n \mid x \in \mathcal{A}, y \in \mathcal{B}\}$$

Furthermore, given the V-representations $\mathcal{A} = \operatorname{conv}([v_1^a, \ldots, v_a^a])$ and $\mathcal{B} = \operatorname{conv}([v_1^b, \ldots, v_b^b])$ the Minkowski sum

$$\mathcal{A} \oplus \mathcal{B} = \mathcal{A} = \mathsf{conv}([v_{1,1}^{ab}, \dots, v_{a,b}^{ab}]), \ \text{ where } v_{ij}^{ab} = v_i^a + v_j^b.$$

Basic Operations on Polytopes

Projection Given a polytope

 P = {[x'y']' ∈ ℝ^{n+m} : A^xx + A^yy ≤ b} ⊂ ℝ^{n+m} the
 projection onto the x-space ℝⁿ is defined as

 $\operatorname{proj}_{x}(\mathcal{P}) := \{ x \in \mathbb{R}^{n} \mid \exists y \in \mathbb{R}^{m} : A^{x}x + A^{y}y \leq b \}.$

Table of Contents

Polyhedra and Polytopes Set Definitions Operations

Reach and Pre Sets Reach Sets Definition

Pre Sets Definition

Invariant and Control Invariant Sets

Invariant Sets Control Invariant Sets

MPC Closed-loop Properties

Recursive Feasibility

Stability

Feasibility and Stability – the Linear Case

Reachable Set

Reachable Set for a policy π

Consider the discrete-time system $x_{k+1} = f(x_k, u_k)$ and the state constraint set \mathcal{X} . The <u>Reachable Set for a policy π </u> from the set \mathcal{S} is defined as

$$\mathsf{Reach}_{\pi}(\mathcal{S}) \triangleq \{ x \in \mathbb{R}^n \mid \exists x_0 \in \mathcal{S} \text{ s.t. } x = f(x_0, \pi(x_0)) \}$$

Consider the discrete-time system $x_{k+1} = f(x_k, u_k)$, the state constraint set \mathcal{X} and input constraint set \mathcal{U} . The <u>Reachable Set</u> from the set S is defined as

 $\mathsf{Reach}(\mathcal{S}) \triangleq \{ x \in \mathbb{R}^n \mid \exists x_0 \in \mathcal{S}, \exists u_0 \in \mathcal{U} \text{ s.t. } x = f(x_0, u_0) \}$

Reachable Set

Reachable Set for a policy π

Consider the discrete-time system $x_{k+1} = f(x_k, u_k)$ and the state constraint set \mathcal{X} . The <u>Reachable Set for a policy π </u> from the set \mathcal{S} is defined as

$$\mathsf{Reach}_{\pi}(\mathcal{S}) \triangleq \{ x \in \mathbb{R}^n \mid \exists x_0 \in \mathcal{S} \text{ s.t. } x = f(x_0, \pi(x_0)) \}$$

Reachable Set

Consider the discrete-time system $x_{k+1} = f(x_k, u_k)$, the state constraint set \mathcal{X} and input constraint set \mathcal{U} . The <u>Reachable Set</u> from the set \mathcal{S} is defined as

 $\mathsf{Reach}(\mathcal{S}) \triangleq \{ x \in \mathbb{R}^n \mid \exists x_0 \in \mathcal{S}, \exists u_0 \in \mathcal{U} \text{ s.t. } x = f(x_0, u_0) \}$

Reachable Set – Example

Reachable Set – Example

Reachable Set – Example

Reach Set Computation

• Consider the polyhedron $\mathcal{X} = \operatorname{conv}(V_x)$ and the linear discrete time system

$$x(t+1) = Ax(t) + Bu(t)$$

where the input $u \in \mathcal{U} = \operatorname{conv}(V_u)$ and define

$$A \circ \mathcal{X} = \operatorname{conv}(AV_x).$$

• Then for the policy
$$\pi(x) = Kx$$

Reach $_{\pi}(\mathcal{X}) = (A - BK) \circ \mathcal{X}$

and

$$\mathsf{Reach}(\mathcal{X}) = \{ \bar{x} + \bar{u} \mid \bar{x} \in A \circ V_x, \ \bar{u} \in B \circ \mathcal{U} \} \\ = (A \circ \mathcal{X}) \oplus (B \circ \mathcal{U}).$$

N-Step Reachable Sets

Definition (*N*-Step Reachable Set $\mathcal{R}_N(\mathcal{S})$)

Consider the discrete-time system $x_{k+1} = f(x_k, u_k)$, the state constraint set \mathcal{X} and input constraint set \mathcal{U} . For a given initial set $\mathcal{S} \subseteq \mathcal{X}$, the *N*-step reachable set $\mathcal{R}_N(\mathcal{S})$ is

 $\mathcal{R}_{i+1}(\mathcal{S}) \triangleq \operatorname{Reach}(\mathcal{R}_i(\mathcal{S})), \ \mathcal{R}_0(\mathcal{S}) = \mathcal{S}, \quad i = 0, \dots, N-1$

By definition all states $x_0 \in S$ will evolve to the *N*-step reachable set $\mathcal{R}_N(S)$ in *N* time steps.

N-Step Reachable Sets

Definition (*N*-Step Reachable Set $\mathcal{R}_N(\mathcal{S})$)

Consider the discrete-time system $x_{k+1} = f(x_k, u_k)$, the state constraint set \mathcal{X} and input constraint set \mathcal{U} . For a given initial set $\mathcal{S} \subseteq \mathcal{X}$, the *N*-step reachable set $\mathcal{R}_N(\mathcal{S})$ is

 $\mathcal{R}_{i+1}(\mathcal{S}) \triangleq \operatorname{Reach}(\mathcal{R}_i(\mathcal{S})), \ \mathcal{R}_0(\mathcal{S}) = \mathcal{S}, \quad i = 0, \dots, N-1$

By definition all states $x_0 \in S$ will evolve to the *N*-step reachable set $\mathcal{R}_N(S)$ in *N* time steps.

Table of Contents

Polyhedra and Polytopes

Set Definitions Operations

Reach and Pre Sets

Reach Sets Definition Pre Sets Definition

Invariant and Control Invariant Sets

Invariant Sets Control Invariant Sets

MPC Closed-loop Properties

Recursive Feasibility

Stability

Feasibility and Stability – the Linear Case

Pre Set Definition

Pre Set for the policy π

Consider the discrete-time system $x_{k+1} = f(x_k, u_k)$ and the state constraint set \mathcal{X} . The <u>Pre Set for a policy π </u> from the set \mathcal{S} is defined as

$$\mathsf{Pre}_{\pi}(\mathcal{S}) \triangleq \{x \in \mathbb{R}^n \mid f(x, \pi(x)) \in \mathcal{S}\}$$

Pre Set

Consider the discrete-time system $x_{k+1} = f(x_k, u_k)$, the state constraint set \mathcal{X} and input constraint set \mathcal{U} . The <u>Pre Set</u> from the set \mathcal{S} is defined as

$$\mathsf{Pre}_{\pi}(\mathcal{S}) \triangleq \{ x \in \mathbb{R}^n \mid \exists u \in \mathcal{U}, f(x, u) \in \mathcal{S} \}$$

Pre Set Definition

Pre Set for the policy π

Consider the discrete-time system $x_{k+1} = f(x_k, u_k)$ and the state constraint set \mathcal{X} . The <u>Pre Set for a policy π </u> from the set \mathcal{S} is defined as

$$\mathsf{Pre}_{\pi}(\mathcal{S}) \triangleq \{x \in \mathbb{R}^n \mid f(x, \pi(x)) \in \mathcal{S}\}$$

Pre Set

Consider the discrete-time system $x_{k+1} = f(x_k, u_k)$, the state constraint set \mathcal{X} and input constraint set \mathcal{U} . The <u>Pre Set</u> from the set \mathcal{S} is defined as

$$\mathsf{Pre}_{\pi}(\mathcal{S}) \triangleq \{ x \in \mathbb{R}^n \mid \exists u \in \mathcal{U}, f(x, u) \in \mathcal{S} \}$$

Pre Set – Example

Pre Set – Example

Pre Set – Example

Pre Set Computation - Autonomous Systems

Consider the polyhedron X = {x | H_xx ≤ h_x} and the linear discrete time autonomous system

$$x(t+1) = Ax(t) + Bu(t)$$

$$\operatorname{Pre}(\mathcal{S}) = \{x \mid HAx \leq h\}$$

Pre Set Computation - System with Inputs

Consider the polyhedron X = {x | H_xx ≤ h_x} and the linear discrete time system

$$x(t+1) = Ax(t) + Bu(t)$$

where the input $u \in \mathcal{U} = \{u \mid H_u u \leq h_u\}$ and define

$$A \circ \mathcal{X} = \operatorname{conv}(AV_x).$$

Then

$$\operatorname{Pre}(\mathcal{S}) = \left\{ x \in \mathbb{R}^n \, | \, \exists u \in \mathbb{R} \mid \begin{bmatrix} H_x A & H_x B \\ 0 & H_u \end{bmatrix} \begin{pmatrix} x \\ u \end{pmatrix} \leq \begin{bmatrix} h_x \\ h_u \end{bmatrix} \right\}$$

which is the projection onto the x-space (with dimension \mathbb{R}^n) of the polyhedron

$$\mathcal{T} := \left\{ \begin{bmatrix} HA & HB \\ 0 & H_u \end{bmatrix} \begin{pmatrix} x \\ u \end{pmatrix} \leq \begin{bmatrix} h \\ h_u \end{bmatrix} \right\}.$$

N-Step Controllable Sets

N-Step Controllable Set $\mathcal{K}_N(\mathcal{S})$

For a given target set $S \subseteq X$, the *N*-step controllable set $\mathcal{K}_N(S)$ is defined as:

$$\mathcal{K}_{\mathcal{N}}(\mathcal{S}) \triangleq \mathsf{Pre}(\mathcal{K}_{\mathcal{N}-1}(\mathcal{S})) \cap \mathcal{X}, \ \mathcal{K}_{0}(\mathcal{S}) = \mathcal{S}, \ \mathcal{N} \in \mathbb{N}^{+}.$$

By definition all states $x_0 \in \mathcal{K}_N(\mathcal{S})$ can be driven, through a time-varying control law, to the target set \mathcal{O} in N steps, while satisfying input and state constraints.

N-Step Controllable Sets

N-Step Controllable Set $\mathcal{K}_N(\mathcal{S})$

For a given target set $S \subseteq \mathcal{X}$, the *N*-step controllable set $\mathcal{K}_N(S)$ is defined as:

$$\mathcal{K}_{\mathcal{N}}(\mathcal{S}) \triangleq \mathsf{Pre}(\mathcal{K}_{\mathcal{N}-1}(\mathcal{S})) \cap \mathcal{X}, \ \mathcal{K}_{0}(\mathcal{S}) = \mathcal{S}, \ \mathcal{N} \in \mathbb{N}^{+}.$$

By definition all states $x_0 \in \mathcal{K}_N(\mathcal{S})$ can be driven, through a time-varying control law, to the target set \mathcal{O} in N steps, while satisfying input and state constraints.

Maximal Controllable Set

Maximal Controllable Set $\mathcal{K}_{\infty}(\mathcal{S})$

For a given target set $\mathcal{O} \subseteq \mathcal{X}$, the maximal controllable set $\mathcal{K}_{\infty}(\mathcal{S})$ for the system x(t+1) = f(x(t), u(t)) subject to the constraints $x(t) \in \mathcal{X}$, $u(t) \in \mathcal{U}$ is the union of all *N*-step controllable sets contained in \mathcal{X} ($N \in \mathbb{N}$).

As we will be discussing, Maximal Controllable Set characterize the MPC region of attraction. However, computing these set may be challenging as these sets are computed using projections.

Table of Contents

Polyhedra and Polytopes

Set Definitions Operations

Reach and Pre Sets

Reach Sets Definition Pre Sets Definition

Invariant and Control Invariant Sets Invariant Sets Control Invariant Sets

MPC Closed-loop Properties

Recursive Feasibility Stability Feasibility and Stability – the Linear Ca

Invariant Sets

Invariant sets

- > are computed for *autonomous systems*
- for a given feedback controller $u = \pi(x)$, will contain the evolution of the system for all times.

Positive Invariant Set

A set $\mathcal{O} \subseteq \mathcal{X}$ is said to be a positive invariant set for the autonomous system $x(t+1) = f(x(t), \pi(x(t)))$ subject to the constraints $x(t) \in \mathcal{X}$, if

$$x(0) \in \mathcal{O} \quad \Rightarrow \quad x(t) \in \mathcal{O}, \quad \forall t \in \mathbb{N}^+$$

Maximal Positive Invariant Set \mathcal{O}_{lpha}

The set \mathcal{O}_{∞} is the maximal invariant set if \mathcal{O}_{∞} is invariant and \mathcal{O}_{∞} contains all the invariant sets contained in \mathcal{X} .

Invariant Sets

Invariant sets

- are computed for *autonomous systems*
- for a given feedback controller $u = \pi(x)$, will contain the evolution of the system for all times.

Positive Invariant Set

A set $\mathcal{O} \subseteq \mathcal{X}$ is said to be a positive invariant set for the autonomous system $x(t+1) = f(x(t), \pi(x(t)))$ subject to the constraints $x(t) \in \mathcal{X}$, if

$$x(0) \in \mathcal{O} \quad \Rightarrow \quad x(t) \in \mathcal{O}, \quad \forall t \in \mathbb{N}^+$$

Maximal Positive Invariant Set \mathcal{O}_{∞}

The set \mathcal{O}_{∞} is the maximal invariant set if \mathcal{O}_{∞} is invariant and \mathcal{O}_{∞} contains all the invariant sets contained in \mathcal{X} .

Invariant Sets

Theorem (Geometric condition for invariance)

A set \mathcal{O} is a positive invariant set if and only if $\mathcal{O} \subseteq \mathsf{Pre}_{\pi}(\mathcal{O})$

$$\mathsf{NOTE:}\ \mathcal{O}\subseteq\mathsf{Pre}_{\pi}(\mathcal{O})\Leftrightarrow\mathsf{Pre}_{\pi}(\mathcal{O})\cap\mathcal{O}=\mathcal{O}$$

Algorithm

Input: System model f, control policy π , constraint set \mathcal{X} Output: \mathcal{O}_{∞} 1. Let $\Omega_0 = \mathcal{X}$ 2. Let $\Omega_{k+1} = \operatorname{Pre}_{\pi}(\Omega_k) \cap \Omega_k$ 3. If $\Omega_{k+1} = \Omega_k$ then $\Omega_{\infty} \leftarrow \Omega_{k+1}$ 4. If else go to 2

The algorithm generates the set sequence $\{\Omega_k\}$ satisfying $\Omega_{k+1} \subseteq \Omega_k, \forall k \in \mathbb{N}$ and it terminates when $\Omega_{k+1} = \Omega_k$ so that Ω_k is the maximal positive invariant set \mathcal{O}_{∞} for $x(t+1) = f_a(x(t))$.

Table of Contents

Polyhedra and Polytopes

Set Definitions Operations

Reach and Pre Sets

Reach Sets Definition Pre Sets Definition

Invariant and Control Invariant Sets

Invariant Sets Control Invariant Sets

MPC Closed-loop Properties

Recursive Feasibility

Stability

Feasibility and Stability – the Linear Case

Control Invariant Sets

Control invariant sets

- are computed for systems subject to external inputs
- provide the set of initial states for which there exists a controller such that the system constraints are never violated.

Control Invariant Set

A set $\mathcal{C}\subseteq \mathcal{X}$ is said to be a control invariant set if

 $egin{aligned} x(t)\in\mathcal{C} &\Rightarrow & \exists u(t)\in\mathcal{U} ext{ such that } f(x(t),u(t))\in\mathcal{C}, \quad orall t\in\mathbb{N}^+ \end{aligned}$

Maximal Control Invariant Set

The set C_{∞} is said to be the maximal control invariant set for the system x(t+1) = f(x(t), u(t)) subject to the constraints in $x(t) \in \mathcal{X}, u(t) \in \mathcal{U}$, if it is control invariant and contains all control invariant sets contained in \mathcal{X} .

Control Invariant Sets

Control invariant sets

- are computed for systems subject to external inputs
- provide the set of initial states for which there exists a controller such that the system constraints are never violated.

Control Invariant Set

A set $\mathcal{C}\subseteq \mathcal{X}$ is said to be a control invariant set if

 $egin{aligned} x(t)\in\mathcal{C} &\Rightarrow & \exists u(t)\in\mathcal{U} ext{ such that } f(x(t),u(t))\in\mathcal{C}, \quad orall t\in\mathbb{N}^+ \end{aligned}$

Maximal Control Invariant Set

The set C_{∞} is said to be the maximal control invariant set for the system x(t+1) = f(x(t), u(t)) subject to the constraints in $x(t) \in \mathcal{X}, u(t) \in \mathcal{U}$, if it is control invariant and contains all control invariant sets contained in \mathcal{X} .

Control Invariant Sets

Same geometric condition for control invariants holds: ${\mathcal C}$ is a control invariant set if and only if

 $\mathcal{C} \subseteq \mathsf{Pre}(\mathcal{C})$

Algorithm

Input: System model f, constraint sets \mathcal{X} and \mathcal{U} Output: \mathcal{O}_{∞} 1. Let $\Omega_0 = \mathcal{X}$ 2. Let $\Omega_{k+1} = \operatorname{Pre}(\Omega_k) \cap \Omega_k$ 3. If $\Omega_{k+1} = \Omega_k$ then $\mathcal{C}_{\infty} \leftarrow \Omega_{k+1}$ 4. If else go to 2

The algorithm generates the set sequence $\{\Omega_k\}$ satisfying $\Omega_{k+1} \subseteq \Omega_k, \forall k \in \mathbb{N}$ and it terminates if $\Omega_{k+1} = \Omega_k$ so that Ω_k is the maximal control invariant set \mathcal{C}_{∞} for the constrained system.

Invariant Sets and Control Invariant Sets

- The set \mathcal{O}_{∞} (\mathcal{C}_{∞}) is *finitely determined* if and only if $\exists i \in \mathbb{N}$ such that $\Omega_{i+1} = \Omega_i$.
- The smallest element $i \in \mathbb{N}$ such that $\Omega_{i+1} = \Omega_i$ is called the *determinedness index*.
- For all states contained in the maximal control invariant set C_{∞} there exists a control law, such that the system constraints are never violated.

Table of Contents

Polyhedra and Polytopes

Set Definitions Operations

Reach and Pre Sets

Reach Sets Definition Pre Sets Definition

Invariant and Control Invariant Sets

Invariant Sets Control Invariant Sets

MPC Closed-loop Properties

Recursive Feasibility

Stability Feasibility and Stability – the Linear Case

Loss of Feasibility

MPC policies compute control actions by solving finite time optimal control problems over shifted time windows:

$$J_{t}^{*}(x(0)) = \min_{u_{t|t},...,u_{t+N-1|t}} \sum_{k=0}^{T-1} h(x_{k|t}, u_{k|t}) + V(x_{t+T|t})$$

such that $x_{k+1|t} = Ax_{k|t} + Bu_{k|t}, \forall k \in \{t, ..., t+N-1\}$
 $x_{k|t} \in \mathcal{X}, u_{k|t} \in \mathcal{U}, \forall k \in \{t, ..., t+N-1\}$
 $x_{t|t} = x(0), x_{N} \in \mathcal{X}_{F}$

Solution: The terminal cost $V(x_{t+T|t})$ and terminal constraint \mathcal{X}_F , often referred to as <u>terminal components</u>, should approximate the tail of cost and constraints beyond the prediction horizon.

- At time step t assume that the MPC problem is feasible and let
 {
 u^{*}_{t|t},..., u^{*}_{t+N-1|t}} and {
 x^{*}_{t|t},..., x^{*}_{t+N|t}}
 be the optimal sequences of states and actions.
- At the next time step t + 1, we have that $x(t+1) = x_{t+1|t}^*$.
- ▶ Therefore, at the next time step t + 1 the sequences $\{u_{t+1|t}^*, \dots, u_{t+N-1|t}^*, 0\}$ and $\{x_{t+1|t}^*, \dots, x_{t+N|t}^*, 0\}$ are feasible, as $x_{t+N|t}^* = 0 \in \mathcal{X}_F$ and the origin is an unforced equilibrium point.

- ► At time step t assume that the MPC problem is feasible and let {u^{*}_{t|t},...,u^{*}_{t+N-1|t}} and {x^{*}_{t|t},...,x^{*}_{t+N|t}} be the optimal sequences of states and actions.
- At the next time step t + 1, we have that $x(t+1) = x_{t+1|t}^*$.
- ▶ Therefore, at the next time step t + 1 the sequences $\{u_{t+1|t}^*, \dots, u_{t+N-1|t}^*, 0\}$ and $\{x_{t+1|t}^*, \dots, x_{t+N|t}^*, 0\}$ are feasible, as $x_{t+N|t}^* = 0 \in \mathcal{X}_F$ and the origin is an unforced equilibrium point.

- ► At time step t assume that the MPC problem is feasible and let {u^{*}_{t|t},...,u^{*}_{t+N-1|t}} and {x^{*}_{t|t},...,x^{*}_{t+N|t}} be the optimal sequences of states and actions.
- At the next time step t + 1, we have that $x(t+1) = x_{t+1|t}^*$.
- ► Therefore, at the next time step t + 1 the sequences {u^{*}_{t+1|t},...,u^{*}_{t+N-1|t},0} and {x^{*}_{t+1|t},...,x^{*}_{t+N|t},0} are feasible, as x^{*}_{t+N|t} = 0 ∈ X_F and the origin is an unforced equilibrium point.

- ► At time step t assume that the MPC problem is feasible and let {u^{*}_{t|t},...,u^{*}_{t+N-1|t}} and {x^{*}_{t|t},...,x^{*}_{t+N|t}} be the optimal sequences of states and actions.
- At the next time step t + 1, we have that $x(t+1) = x_{t+1|t}^*$.
- As $x_{t+N|t}^* \in \mathcal{X}_F$ there exists $\bar{u} \in \mathcal{U}$ such that $\bar{x} = f(x_{t+N|t}^*, \bar{u}) \in \mathcal{X}_F$. Thus, at the next time step t + 1 the sequences $\{u_{t+1|t}^*, \dots, u_{t+N-1|t}^*, \bar{u}\}$ and $\{x_{t+1|t}^*, \dots, x_{t+N|t}^*, \bar{x}\}$ are feasible.

Stability – Assumptions

Let the following assumptions hold

The stage cost satisfies

$$h(x, u) = 0 \forall x \in \mathcal{X} \setminus \{0\}, \forall u \in \mathcal{U} \setminus \{0\}$$

and h(0,0) > 0.

- The terminal set X_F is a <u>control invariant set</u> and the state and input constraint sets X and U are compact.
- ▶ The terminal cost function $V : \mathbb{R}^n \to \mathbb{R}$ is a control Lyapunov function for the set \mathcal{X}_F , i.e.,

$$orall x \in \mathcal{X}_F, \exists u \in \mathcal{U} \text{ such that } V(f(x, u)) - V(x) \geq -h(x, u)$$

and $f(x, u) \in \mathcal{X}_F$

Next, we show by induction that the open-loop cost $J_t^*(x(t))$ is a Lyapunov function for the closed-loop system, i.e.,

$$J^*_{t+1}(x(t+1)) < J^*_t(x(t)), \forall x(t) \in \mathcal{X} \setminus \{0\}.$$

Table of Contents

Polyhedra and Polytopes

Set Definitions Operations

Reach and Pre Sets

Reach Sets Definition Pre Sets Definition

Invariant and Control Invariant Sets

Invariant Sets Control Invariant Sets

MPC Closed-loop Properties

Recursive Feasibility

Stability

Feasibility and Stability – the Linear Case

Stability – Proof (1/2)

► At time step t, assume that the MPC problem is feasible and let {u^{*}_{t|t},...,u^{*}_{t+N-1|t}} and {x^{*}_{t|t},...,x^{*}_{t+N|t}} be the optimal sequences of states and actions. Then the open-loop cost is

$$J_t^*(x(t)) = \sum_{k=t}^{N-1} h(x_{k|t}^*, u_{k|t}^*) + V(x_{t+N|t}^*)$$

$$\geq \sum_{k=t}^{N-1} h(x_{k|t}^*, u_{k|t}^*) + h(x_{t+N|t}^*, \bar{u}) + V(f(x_{t+N|t}^*, \bar{u}))$$

for $\bar{u} \in \mathcal{U}$ such that $f(x^*_{t+N|t}, \bar{u})$.

Stability – Proof (2/2)

• At the next time step t + 1,

$$\bar{J} = \sum_{k=t+1}^{N-1} h(x_{k|t}^*, u_{k|t}^*) + h(x_{t+N|t}^*, \bar{u}) + V(f(x_{t+N|t}^*, \bar{u}))$$

is the cost associated with the feasible sequence of inputs $\{u^*_{t+1|t},\ldots,u^*_{t+N-1|t},\bar{u}\}$, thus

$$J_t^*(x(t)) = h(x_{k|t}^*, u_{k|t}^*) + \bar{J} \ge h(x_{t|t}^*, u_{t|t}^*) + J_{t+1}^*(x(t+1)).$$

Concluding, the open-loop cost satisfies

$$J_{t+1}^*(x(t+1)) - J_t^*(x(t)) \le -h(x(t), u(t))$$

as $x_{t|t}^* = x(t)$ and $u_{t|t}^* = x(t)$, and it is a Lyapunov function for the closed-loop system.

Table of Contents

Polyhedra and Polytopes

Set Definitions Operations

Reach and Pre Sets

Reach Sets Definition Pre Sets Definition

Invariant and Control Invariant Sets

Invariant Sets Control Invariant Sets

MPC Closed-loop Properties

Recursive Feasibility Stability Feasibility and Stability – the Linear Case

Constrained Linear Quadratic Regulator

Consider the following finite time optimal control problem:

$$J_{t}^{*}(x(0)) = \min_{\substack{u_{t|t},...,u_{t+N-1}|t}} \sum_{k=0}^{T-1} h(x_{k|t}, u_{k|t}) + x_{t+T|t}^{\top} Px_{t+T|t}$$

such that $x_{k+1|t} = Ax_{k|t} + Bu_{k|t}, \forall k \in \{t, ..., t+N-1\}$
 $x_{k|t} \in \mathcal{X}, u_{k|t} \in \mathcal{U}, \forall k \in \{t, ..., t+N-1\}$
 $x_{t|t} = x(0), x_{N} \in \mathcal{X}_{F}$

where $h(x, u) = x^{\top}Qx + u^{\top}Ru$.

Next, we discuss how to construct the terminal cost $V(x) = x^{\top} P x$ and the terminal set \mathcal{X}_F to guarantee recursive feasibility and closed-loop stability.

Design Rules

1. Design unconstrained LQR control law

$$K_{\infty} = (B'P_{\infty}B + R)^{-1}B'P_{\infty}A$$

where P_∞ is the solution to the discrete-time algebraic Riccati equation:

$$P_{\infty} = A' P_{\infty} A + Q - A' P_{\infty} B (B' P_{\infty} B + R)^{-1} B' P_{\infty} A$$

- 2. Choose the terminal weight $P=P_\infty$
- Choose the terminal set X_F to be the maximum invariant set for the closed-loop system x_{k+1} = (A − BK_∞)x_k:

$$x_{k+1} = (A - BK_\infty)x_k \in \mathcal{X}_F, \;\; ext{ for all } x_k \in \mathcal{X}_F$$

All state and input constraints are satisfied in \mathcal{X}_F :

$$\mathcal{X}_F \subseteq \mathcal{X}, \ F_{\infty} x_k \in \mathcal{U}, \ \ \text{for all} \ x_k \in \mathcal{X}_F$$

Stability and Feasibility Proof

By construction all the Assumptions of the required to guarantee recursive feasibility and stability are verified:

- 1. The stage cost is a positive definite function
- 2. By construction the terminal set is **invariant** under the local control law $v = -K_{\infty}x$
- 3. Terminal cost is a continuous Lyapunov function in the terminal set \mathcal{X}_F and satisfies:

$$\begin{aligned} x_{k+1}^\top P x_{k+1} - x_k^\top P x_k \\ &= x_k' (-P_\infty + A' P_\infty A - A' P_\infty B (B' P_\infty B + R)^{-1} B' P_\infty A) x_k \\ &= -x_k' Q x_k \end{aligned}$$

Summary of Safety and Stability Properties

Key Message: When the MPC terminal components are not designed correctly, the closed-loop system may violate safety constraints and convergence to the goal state/set is not guaranteed

Solution: We have shown that given a terminal set set \mathcal{X}_F which is control invariant, and a terminal cost function V(x) which is a control Lyapunov function.

- The MPC problem is feasible at all times
- The closed-loop system is stable as for the positive definite open-loop cost we have J^{*}_{t+1}(x(t+1)) < J^{*}_t(x(t)), ∀x(t) ∉ X_F

Main drawback: These terminal components are hard to compute even for linear constrained deterministic systems.