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The brain needs to identify objects despite 
stimulus variability 

Examples of variability: rotation, scaling, pose, background… 

DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the 
brain solve visual object recognition?." Neuron 73.3 (2012): 415-434.
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“Untangling” object manifolds by layers of sensory processing

DiCarlo and Cox. Trends in cognitive sciences. 2007

of visual re-representations, from V1 to V2 to V4 to IT
cortex (Figure 2). Beginning with the studies of Gross [27],
a wealth of work has shown that single neurons at the
highest level of the monkey ventral visual stream – the IT
cortex – display spiking responses that are probably useful
for object recognition. Specifically, many individual IT
neurons respond selectively to particular classes of objects,
such as faces or other complex shapes, yet show some
tolerance to changes in object position, size, pose and
illumination, and low-level shape cues. (Also see e.g.
Ref. [28] for recent related results in humans.)

How can the responses of individual ventral stream
neurons provide insight into object manifold untangling
in the brain? To approach this, we have focused on char-
acterizing the initial wave of neuronal population ‘images’
that are successively produced along the ventral visual str-
eam as the retinal image is transformed and re-represented
on its way to the IT cortex (Figure 2). For example, we and
our collaborators recently found that simple linear classi-
fiers can rapidly (within <300 ms of image onset) and
accurately decide the category of an object from the firing
rates of an IT population of!200 neurons, despite variation
in object position and size [19]. It is important to note that
using ‘stronger’ (e.g. non-linear) classifiers did not substan-
tially improve recognition performance and the same

classifiers fail when applied to a simulated V1 population
of equal size [19]. This shows thatperformance isnota result
of the classifiers themselves, but the powerful form of visual
representation conveyed by the IT cortex. Thus, compared
with early visual representations, object manifolds are less
tangled in the IT population representation.

To show this untangling graphically, Figure 3 illustrates
the manifolds of the faces of Sam and Joe from Figure 1d
(retina-like representation) re-represented in the V1 and IT
cortical population spaces. To generate these, we took popu-
lations of simulated V1-like response functions (e.g. Refs
[29,30]) and IT-like response functions (e.g. Refs [31,32]),
and applied them to all the images of Joe and Sam.
This reveals that the V1 representation, like the retinal
representation, still contains highly curved, tangled object
manifolds (Figure 3a), whereas the same object manifolds
are flattened and untangled in the IT representation
(Figure 3b). Thus, from the point of view of downstream
decisionneurons, the retinal andV1 representations are not
in a good format to separate Joe from the rest of the world,
whereas the IT representation is. In sum, the experimental
evidence suggests that the ventral stream transformation
(culminating in IT) solves object recognition by untangling
objectmanifolds.For eachvisual image striking the eye, this
total transformation happens progressively (i.e. stepwise

Figure 2. Neuronal populations along the ventral visual processing stream. The rhesus monkey is currently our best model of the human visual system. Like humans,
monkeys have high visual acuity, rely heavily on vision (!50% of macaque neocortex is devoted to vision) and easily perform visual recognition tasks. Moreover, the
monkey visual areas have been mapped and are hierarchically organized [26], and the ventral visual stream is known to be critical for complex object discrimination
(colored areas, see text). We show a lateral schematic of a rhesus monkey brain (adapted from Ref. [26]). We conceptualize each stage of the ventral stream as a new
population representation. The lower panels schematically illustrate these populations in early visual areas and at successively higher stages along the ventral visual stream
– their relative size loosely reflects their relative output dimensionality (approximate number of feed-forward projection neurons). A given pattern of photons from the world
(here, a face) is transduced into neuronal activity at the retina and is progressively and rapidly transformed and re-represented in each population, perhaps by a common
transformation (T). Solid arrows indicate the direction of visual information flow based on neuronal latency (!100 ms latency in IT), but this does not preclude fast feedback
both within and between areas (dashed arrows, see Box 1). The gray arrows across the bottom indicate the population representations for the retina, V1 and IT, which are
considered in Figures 1d and 3a,b, respectively. RGC, retinal ganglion cells; LGN, lateral geniculate nucleus.
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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Untangling: reformatting 
manifolds across the layers to 
increase 
linear separability

In Visual Cortex…

Krizhevsky, Sutskever, and Hinton. NIPS. 2012.

In Deep Networks…

Pixel: Poor
(Nonlinearly Separable) 

graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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V1: Intermediate 
(Nonlinearly Separable) 

graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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IT: Good
(Linearly Separable) 
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Outline

1. Introduction 

2. Theory of Linear Classification of Object Manifolds

3. Object Manifolds in Visual Hierarchy

4. Object Manifolds in Auditory Hierarchy 

5. Object Manifolds in Language Hierarchy 

6. Understanding Generalization Dynamics using Object Manifolds 



Statistical Mechanical Theory of 
Linear Classification of Manifolds

SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. ”Classification and 
Geometry of General Perceptual Manifolds." Physical Review X (2018) 

Which geometric properties determine the 
linear separability of manifolds?



Model of Object Manifolds

N: ambient dimension for data. 

1𝑠𝑡 𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑

2𝑛𝑑 𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑

3𝑟𝑑

𝑃𝑡ℎ

𝑃 − 1𝑡ℎ

…
P: number of manifolds

Each Point: 𝒙" = 𝒙#
" + ∑$%&' 𝑠$𝒖$

", 
Center: 𝒙#

" ∈ ℛ(

Directors: 𝒖$
" ∈ ℛ(

Shape: 𝑓 𝑠 ≤ 0, 𝑠 ∈ ℛ'… 𝑥#

𝑥!

𝑥$

D: subspace spanned by the manifold

𝒖!

𝒖"

𝒖#

…

𝑠

• Statistical Assumptions about P manifolds
• Centers 𝑥⃗" are randomly oriented

• Manifold subspaces are randomly oriented

(or manifold-like object representations) 

No need to be smooth (i.e. data clouds 
✅

) 



Capacity of object manifolds

- Critical Manifold Capacity: maximum load (P/N) where most 
dichotomies of manifolds are linearly separable 

P manifolds ↑

SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. "Linear readout of object 
manifolds." Physical Review E 93.6 (2016): 060301.

(in N dimension) 

𝜅
𝐰

… 𝑥#

𝑥!

𝑥$

- How is the geometry related to manifold capacity? 



Statistical Mechanics: Volume of Solution

Replica trick: hlog V i = lim
n!0

hV ni � 1

n

Θ : heavyside step function
1 when argument >0
0 when argument <=0
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Capacity versus Geometry for L2 balls 

𝛼 =
𝑃 (𝑁𝑜. 𝑜𝑓 𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑𝑠)
𝑁 (𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)

𝜅 = margin 
𝑅 = radius of a ball
𝐷 = dimension of a ball
Line: Theory 
Markers: Simulation 

SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. "Linear readout of object 
manifolds." Physical Review E 93.6 (2016): 060301.
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Capacity of object manifolds 

General manifold capacity in high dimension:

𝜶𝒎𝒂𝒏𝒊𝒇𝒐𝒍𝒅(𝜿) = 𝜶𝒃𝒂𝒍𝒍 𝜿, 𝑹𝑴, 𝑫𝑴

SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. ”Classification and Geometry of General 
Perceptual Manifolds." Physical Review X (2018) 

: anchor point, s̃

~t
: Gaussian vector

DM = h~t · ŝi~t,t0
RM =

p
hs̃2i~t,t0

~t, t0t0
O

𝜶𝒎𝒂𝒏𝒊𝒇𝒐𝒍𝒅 : general manifold capacity 
𝜶𝒃𝒂𝒍𝒍∶ capacity for L2 balls of radius R,D  

𝜿: margin
𝑹𝑴 ∶ Effective Manifold Radius 

𝑫𝑴 ∶ Effective Manifold Dimension 

𝜅



Size of General Manifolds : 
Effective Radius (𝑅! ), Effective Dimension (𝐷! ) 

• Effective Radius: 𝑅-" = 〈 $𝒔 𝒕⃗
𝟐
〉𝒕⃗

• Effective Dimension: 𝐷- =
〈 𝒕⃗⋅3𝒔 𝒕⃗ 〉𝒕⃗

0

61
0

𝜶𝒎𝒂𝒏𝒊𝒇𝒐𝒍𝒅 = 𝜶𝒃𝒂𝒍𝒍 𝜿,𝑹𝑴, 𝑫𝑴 = 𝜶𝒑𝒐𝒊𝒏𝒕 𝜿 + 𝑹𝑴 𝑫𝑴

For High Dimension (𝑫𝑴 ≫ 𝟏)

• Anchor Points: $𝒔 𝑻 , representative points for linear separation  

−𝒕⃗

𝑇 = 𝑡, 𝑡, , 𝑇-~𝑁𝑜𝑟𝑚(0,1)

“Classification and Geometry of General Perceptual Manifolds”, Chung, Lee, Sompolinsky (2018), Physical Review X

Anchors C𝒔 𝑻



Correlations between  Manifolds’ Positions

ØCorrelations between manifold centers tend to reduce capacity  
Ø Correlations are often low rank
Ø Readout weight vector projects data to the null space of centers

hx̂0,i · x̂0,jii<j

Center Correlation: 

Average of signed pairwise overlap 
between manifold centers 

Cohen*, Chung*, Lee, and Sompolinsky Nature Comms (2020)



P manifolds ↑

𝜅
𝐰

… 𝑥#

𝑥!

𝑥$

ØManifold Capacity
𝜶𝒎𝒂𝒏𝒊𝒇𝒐𝒍𝒅 : max #(Manifolds)/#(Features)

s.t. manifold dichotomies are separable 

: anchor point, s̃

~t

DM = h~t · ŝi~t,t0
RM =

p
hs̃2i~t,t0

~t, t0t0
O

ØManifold Radius, 𝑹𝑴
ØManifold Dimension, 𝑫𝑴

captures each manifold’s dimension,
manifold’s size related to capacity
𝜶𝒎𝒂𝒏𝒊𝒇𝒐𝒍𝒅= 𝜶𝒃𝒂𝒍𝒍 𝑹𝑴, 𝑫𝑴

ØCenter Correlation
average of signed pairwise overlap 
between manifold centers 

Cohen*, Chung*, Lee, and Sompolinsky Nature Comms (2020)
Chung, Lee, and Sompolinsky PRX (2018)
Chung, Lee, and Sompolinsky PRE (2016)
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Low Manifold Capacity High Manifold Capacity
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O

Figure 1: Illustration of word manifolds. (a) highly tangled manifolds, in low capacity regime (b)
untangled manifolds, in high capacity regime (c) Manifold Dimension captures the projection of a
Gaussian vector onto the direction of an anchor point, and Manifold Radius captures the norm of an
anchor point in manifold subspace. (d) Illustration of untanglement of words over time

We measure these properties under different manifold types, including categories such as phonemes90

and words, or linguistic feature categories such as part-of-speech tags. This allows us to quantify91

the amount of invariant object information and the characteristics of the emergent geometry in the92

representations learned by the speech models.93

2.1 Object Manifold Capacity and Mean Field Theoretic manifold analysis94

In a system where P object manifolds are represented in N ambient dimensions, the ‘load’ in the95

system is defined by ↵ = P/N . When ↵ is small, i.e. few object manifolds are in a high ambient96

dimension, it’s easy to find a separating hyperplane for a random dichotomy2 of the manifolds.97

When ↵ is large, too many categories are squeezed in a small ambient dimension, rendering the98

representations highly inseparable. Manifold capacity refers to the critical load, ↵C = P/N , defined99

by the critical number of object manifolds, P , that can be linearly separated given N features. Above100

↵C , most dichotomies are inseparable, and below ↵C , most are separable[24, 25]. This framework101

generalizes the notion of the perceptron storage capacity [26] from points to manifolds, re-defining102

the unit for counting capacity as ‘object manifolds’ rather than individual points. The manifold103

capacity thus serves as a measure of the linearly decodable information about object identity per unit,104

and it can be measured from data in two ways:105

1. Empirical Manifold Capacity, ↵SIM : the manifold capacity can be measured empirically106

with a bisection search to find the critical number of features N such that the fraction of107

linearly separable random dichotomies is close to 1/2.108

2. Mean Field Theoretic Manifold Capacity, ↵MFT : can be estimated using the replica109

mean field formalism with the framework introduced by [24, 25]. ↵MFT is estimated from110
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guiding Gaussian vectors shown in Fig. 1(c), and estimates the average embedding dimension of the123

manifold contributing to the classification. This is upper bounded by min(M, N), where M is the124
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3See SM for exact relationship between s̃ and capacity, the outline of the code, and a demonstration that

MFT manifold capacity matches the empirical capacity (given in Fig. SM7)
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Classification and Geometry of General Perceptual Manifolds
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Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals
associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same
perceptual object. Object recognition and discrimination require classifying the manifolds in a manner that
is insensitive to variability within a manifold. How neuronal systems give rise to invariant object
classification and recognition is a fundamental problem in brain theory as well as in machine learning.
Here, we study the ability of a readout network to classify objects from their perceptual manifold
representations. We develop a statistical mechanical theory for the linear classification of manifolds with
arbitrary geometry, revealing a remarkable relation to the mathematics of conic decomposition. We show
how special anchor points on the manifolds can be used to define novel geometrical measures of radius and
dimension, which can explain the classification capacity for manifolds of various geometries. The general
theory is demonstrated on a number of representative manifolds, including l2 ellipsoids prototypical of
strictly convex manifolds, l1 balls representing polytopes with finite samples, and ring manifolds
exhibiting nonconvex continuous structures that arise from modulating a continuous degree of freedom.
The effects of label sparsity on the classification capacity of general manifolds are elucidated, displaying a
universal scaling relation between label sparsity and the manifold radius. Theoretical predictions are
corroborated by numerical simulations using recently developed algorithms to compute maximum margin
solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework
for applying statistical mechanics of linear classification to data arising from perceptual neuronal responses
as well as to artificial deep networks trained for object recognition tasks.

DOI: 10.1103/PhysRevX.8.031003 Subject Areas: Biological Physics, Complex Systems,
Statistical Physics

I. INTRODUCTION

One fundamental cognitive task performed by animals
and humans is the invariant perception of objects, requiring
the nervous system to discriminate between different
objects despite substantial variability in each object’s
physical features. For example, in vision, the mammalian
brain is able to recognize objects despite variations in their
orientation, position, pose, lighting, and background. Such
impressive robustness to physical changes is not limited to

vision; other examples include speech processing, which
requires the detection of phonemes despite variability in the
acoustic signals associated with individual phonemes, and
the discrimination of odors in the presence of variability in
odor concentrations. Sensory systems are organized as
hierarchies, consisting of multiple layers, transforming
sensory signals into a sequence of distinct neural repre-
sentations. Studies of high-level sensory systems, e.g., the
inferotemporal cortex (IT) in vision [1], auditory cortex in
audition [2], and piriform cortex in olfaction [3], reveal that
even the late sensory stages exhibit significant sensitivity of
neuronal responses to physical variables. This suggests that
sensory hierarchies generate representations of objects that,
although not entirely invariant to changes in physical
features, are still readily decoded in an invariant manner
by a downstream system. This hypothesis is formalized
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Measured manifold capacity is predicted by 
the theoretical manifold capacity (using 
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Manifold Capacity improves across deep 
network layers
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Manifold Capacity improves across layers
Due to reduced Dimension, Radius, Correlations
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Figure 7: Manifold property changes by network building blocks. Changes in the relative manifold
properties between the input and the output of different network building-blocks, shown as change in dimension
vs change in center correlations (top) and change in radius vs change in center correlations (bottom). Each panel
pools results from a specific building-block in AlexNet (blue markers) and VGG-16 (green markers) for both
point-cloud manifolds (full class, top 10%) and smooth manifolds (1-d and 2-d, translation and shear).
Marker shape represents layer type (square- convolution layer, right-triangle- max-pooling layer, hexagon- fully
connected layer). For layer sequences marker shape represents the last layer in the sequence. For isolated ReLU
marker shape represent previous layer type; pentagon- ReLU after fully-connected layer, up-triangle- ReLU after
convolution layer. Color changes from dark to light along the network.
(a) Changes in manifold properties for isolated ReLU operations.
(b) Changes in manifold properties for isolated Max-pooling operations.
(c) Changes in manifold properties for a common sequence of operations: one or more repetitions of convolution,
ReLU operations, with or without intermediate normalization operation, ending with a max-pooling operation.
(d) Changes in manifold properties for a common sequence of operations: fully-connected, ReLU operations.
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Figure 8: Theoretical predictions.
(a) Comparison of numerically measured capacity (x-axis) with the theoretical prediction (y-axis) for AlexNet,
VGG-16 at different layers along the hierarchy (top 10% point-cloud manifolds).
(b) Comparison of numerically measured capacity (x-axis) with the theoretical prediction (y-axis) for AlexNet at
different layers along the hierarchy and different levels of manifold variability (smooth 2-d manifolds).
(c) Numerically measured capacity (y-axis) at different number of objects (x-axis) for point-cloud manifolds at
different layers (dashed line: top 10% manifolds; dotted line: top 5% manifolds).
(d) Numerically measured capacity (y-axis) at different number of objects (x-axis) for smooth 2-d shear manifolds.
Marker shape represents layer type (circle- pixel layer, square- convolution layer, right-triangle- max-pooling layer,
hexagon- fully connected layer, down-triangle- local normalization layer). Color (blue- AlexNet, green- VGG-16)
changes from dark to light along the network.
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Neural Manifolds in Macaque Ventral Stream (vs. in DCNN)

Ø Task-relevant geometry can be used 
as measures for:
Ø characterizing high-dimensional 

neural population 
Ø comparing representations
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Figure 1. Example images used to measure object category recognition performance. Two
of the 1960 tested images are shown from the categories Cars, Fruits, and Animals (we also tested the
categories Planes, Chairs, Tables, and Faces). Variability within each category consisted of changes to
object exemplar (e.g. 7 di↵erent types of Animals), geometric transformations due to position, scale,
and rotation/pose, and changes to background (each background image is unique).

perception: context independent basic-level object recognition within brief visual presentation. The task
is to determine the category of an object instance that is presented under the e↵ect of image variations
due to object exemplar, geometric transformations (position, scale, and rotation/pose), and background.
This task is well supported by behavioral measurements: humans [1] and macaques [2] are known to solve
this task with high proficiency. It is well supported by neural measurements: evidence from IT cortex
indicates that the neural representation supports and performs highly on this task [37]. Furthermore, this
task provides a computationally challenging problem on which previous computational models have been
shown to severely underperform [35,36]. Therefore, this task is di�cult computationally and is performed
at high proficiency by primates, with evidence that the primate ventral visual stream produces an e↵ective
representation in IT cortex.

Methodologically, the task is defined through an image generation process. An image is constructed
by first choosing one of seven categories, then one of seven 3D object exemplars from that category,
then a randomly chosen background image (each background image is used only once), and finally the
variation parameters are drawn from a distribution to span two full octaves of scale variation, the full
width of the image for translation variation, and the full sphere for pose variation. For each object
exemplar we generated 40 unique images using this process, resulting in 1960 images in total. See Figure
1 for example images organized by object category and Methods for further description of the image
generation process. The resulting image set has several advantages and disadvantages. Advantageously,
this procedure eliminates dependencies between objects and backgrounds that may be found in real-world
images [38], and introduces a controlled amount of variability or di�culty in the task, which we have
used to produce image datasets that are known to be di�cult for algorithms [35,36,39]. Though arguably
not fully “natural”, the resulting images are highly complex (see Discussion for further advantages and
disadvantages).

In evaluating the neural representational performance we must also define the behavioral context
within which the neural representation supports behavior. This definition is important because it deter-
mines specific choices in the experimental setup. The behavioral context that we seek to address is a
sub-problem of general visual behavior: vision in a natural duration fixation, or visual object recogni-
tion within one fixation without contextual influence, eye movements, or shifts in attention (also called
“core visual object recognition” [6]). In our neural experiments we have chosen a presentation time of
100 milliseconds (ms) so as to be relevant for this behavior (see Discussion for further justification and
Supporting Information (SI) for behavioral measurements on this task).

As a first step to evaluate the neural representation, we recorded multi-unit and single-unit neural
activity from awake behaving rhesus macaques during passive fixation. We recorded activity using large
scale multi-electrode arrays placed in either IT cortex or visual area V4. To create a neural feature vector,
which we use to assess object representational performance, we presented each image (1960 images in

Ø Dataset: 
Ø 64 3D object models (varied in rendering, position, size)  in random backgrounds  

(stimuli from Majaj, DiCarlo et al, 2015) 

of visual re-representations, from V1 to V2 to V4 to IT
cortex (Figure 2). Beginning with the studies of Gross [27],
a wealth of work has shown that single neurons at the
highest level of the monkey ventral visual stream – the IT
cortex – display spiking responses that are probably useful
for object recognition. Specifically, many individual IT
neurons respond selectively to particular classes of objects,
such as faces or other complex shapes, yet show some
tolerance to changes in object position, size, pose and
illumination, and low-level shape cues. (Also see e.g.
Ref. [28] for recent related results in humans.)

How can the responses of individual ventral stream
neurons provide insight into object manifold untangling
in the brain? To approach this, we have focused on char-
acterizing the initial wave of neuronal population ‘images’
that are successively produced along the ventral visual str-
eam as the retinal image is transformed and re-represented
on its way to the IT cortex (Figure 2). For example, we and
our collaborators recently found that simple linear classi-
fiers can rapidly (within <300 ms of image onset) and
accurately decide the category of an object from the firing
rates of an IT population of!200 neurons, despite variation
in object position and size [19]. It is important to note that
using ‘stronger’ (e.g. non-linear) classifiers did not substan-
tially improve recognition performance and the same

classifiers fail when applied to a simulated V1 population
of equal size [19]. This shows thatperformance isnota result
of the classifiers themselves, but the powerful form of visual
representation conveyed by the IT cortex. Thus, compared
with early visual representations, object manifolds are less
tangled in the IT population representation.

To show this untangling graphically, Figure 3 illustrates
the manifolds of the faces of Sam and Joe from Figure 1d
(retina-like representation) re-represented in the V1 and IT
cortical population spaces. To generate these, we took popu-
lations of simulated V1-like response functions (e.g. Refs
[29,30]) and IT-like response functions (e.g. Refs [31,32]),
and applied them to all the images of Joe and Sam.
This reveals that the V1 representation, like the retinal
representation, still contains highly curved, tangled object
manifolds (Figure 3a), whereas the same object manifolds
are flattened and untangled in the IT representation
(Figure 3b). Thus, from the point of view of downstream
decisionneurons, the retinal andV1 representations are not
in a good format to separate Joe from the rest of the world,
whereas the IT representation is. In sum, the experimental
evidence suggests that the ventral stream transformation
(culminating in IT) solves object recognition by untangling
objectmanifolds.For eachvisual image striking the eye, this
total transformation happens progressively (i.e. stepwise

Figure 2. Neuronal populations along the ventral visual processing stream. The rhesus monkey is currently our best model of the human visual system. Like humans,
monkeys have high visual acuity, rely heavily on vision (!50% of macaque neocortex is devoted to vision) and easily perform visual recognition tasks. Moreover, the
monkey visual areas have been mapped and are hierarchically organized [26], and the ventral visual stream is known to be critical for complex object discrimination
(colored areas, see text). We show a lateral schematic of a rhesus monkey brain (adapted from Ref. [26]). We conceptualize each stage of the ventral stream as a new
population representation. The lower panels schematically illustrate these populations in early visual areas and at successively higher stages along the ventral visual stream
– their relative size loosely reflects their relative output dimensionality (approximate number of feed-forward projection neurons). A given pattern of photons from the world
(here, a face) is transduced into neuronal activity at the retina and is progressively and rapidly transformed and re-represented in each population, perhaps by a common
transformation (T). Solid arrows indicate the direction of visual information flow based on neuronal latency (!100 ms latency in IT), but this does not preclude fast feedback
both within and between areas (dashed arrows, see Box 1). The gray arrows across the bottom indicate the population representations for the retina, V1 and IT, which are
considered in Figures 1d and 3a,b, respectively. RGC, retinal ganglion cells; LGN, lateral geniculate nucleus.
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Q: Do ”word” manifolds arise in  DCNN and DRNN models?

limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.

Figure 2. Comparison of Human and
Network Behavior: Word and Genre Recog-
nition Tasks
(A) Human performance on word recognition task

(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-

subject SEM.

(B) Network performance on the word recognition

task (using the same stimuli and task as for human

listeners). Same plotting conventions as (A) were

used. Error bars plot SEM, bootstrapped over

stimuli and words.

(C) Scatterplot comparing word recognition per-

formance of human listeners and the network for

each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.

(D) Example cochleagrams of a speech signal with

and without background noise. Distortion was

computed as the mean absolute difference be-

tween these two cochleagrams.

(E) Cochleagram distortion by condition. y axis is

oriented to facilitate comparison with (A) and (B).

(F) Scatterplot of human performance and coch-

leagram distortion (i.e., data from A and E). The

rank correlation between distortion and human

performance is substantially lower than that

between human performance and network

performance (C). See Figure S1A for results

when restricting distortion measurements to time-

frequency bins with substantial speech signal

power.

(G) Human performance on the genre classifica-

tion task (n = 111). Same plotting conventions as

(A) were used.

(H) Network performance on the same stimuli and

task. Same plotting conventions as (B) were used.

(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.
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(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-

subject SEM.

(B) Network performance on the word recognition
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listeners). Same plotting conventions as (A) were
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stimuli and words.

(C) Scatterplot comparing word recognition per-
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(A) were used.
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(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.
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(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-
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(B) Network performance on the word recognition
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listeners). Same plotting conventions as (A) were
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(C) Scatterplot comparing word recognition per-
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each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.
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(G) Human performance on the genre classifica-
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(A) were used.

(H) Network performance on the same stimuli and

task. Same plotting conventions as (B) were used.

(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.
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(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of
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a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-
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(B) Network performance on the word recognition

task (using the same stimuli and task as for human

listeners). Same plotting conventions as (A) were
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stimuli and words.

(C) Scatterplot comparing word recognition per-

formance of human listeners and the network for

each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.
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computed as the mean absolute difference be-
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performance (C). See Figure S1A for results

when restricting distortion measurements to time-

frequency bins with substantial speech signal

power.
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(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.

Neuron 98, 630–644, May 2, 2018 633

limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.

Figure 2. Comparison of Human and
Network Behavior: Word and Genre Recog-
nition Tasks
(A) Human performance on word recognition task

(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-

subject SEM.

(B) Network performance on the word recognition

task (using the same stimuli and task as for human

listeners). Same plotting conventions as (A) were

used. Error bars plot SEM, bootstrapped over

stimuli and words.

(C) Scatterplot comparing word recognition per-

formance of human listeners and the network for

each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.

(D) Example cochleagrams of a speech signal with

and without background noise. Distortion was

computed as the mean absolute difference be-

tween these two cochleagrams.

(E) Cochleagram distortion by condition. y axis is

oriented to facilitate comparison with (A) and (B).

(F) Scatterplot of human performance and coch-

leagram distortion (i.e., data from A and E). The

rank correlation between distortion and human

performance is substantially lower than that

between human performance and network

performance (C). See Figure S1A for results

when restricting distortion measurements to time-

frequency bins with substantial speech signal

power.

(G) Human performance on the genre classifica-

tion task (n = 111). Same plotting conventions as

(A) were used.

(H) Network performance on the same stimuli and

task. Same plotting conventions as (B) were used.

(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.

Figure 2. Comparison of Human and
Network Behavior: Word and Genre Recog-
nition Tasks
(A) Human performance on word recognition task

(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-

subject SEM.

(B) Network performance on the word recognition

task (using the same stimuli and task as for human

listeners). Same plotting conventions as (A) were

used. Error bars plot SEM, bootstrapped over

stimuli and words.

(C) Scatterplot comparing word recognition per-

formance of human listeners and the network for

each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.

(D) Example cochleagrams of a speech signal with

and without background noise. Distortion was

computed as the mean absolute difference be-

tween these two cochleagrams.

(E) Cochleagram distortion by condition. y axis is

oriented to facilitate comparison with (A) and (B).

(F) Scatterplot of human performance and coch-

leagram distortion (i.e., data from A and E). The

rank correlation between distortion and human

performance is substantially lower than that

between human performance and network

performance (C). See Figure S1A for results

when restricting distortion measurements to time-

frequency bins with substantial speech signal

power.

(G) Human performance on the genre classifica-

tion task (n = 111). Same plotting conventions as

(A) were used.

(H) Network performance on the same stimuli and

task. Same plotting conventions as (B) were used.

(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.

Figure 2. Comparison of Human and
Network Behavior: Word and Genre Recog-
nition Tasks
(A) Human performance on word recognition task

(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-

subject SEM.

(B) Network performance on the word recognition

task (using the same stimuli and task as for human

listeners). Same plotting conventions as (A) were

used. Error bars plot SEM, bootstrapped over

stimuli and words.

(C) Scatterplot comparing word recognition per-

formance of human listeners and the network for

each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.

(D) Example cochleagrams of a speech signal with

and without background noise. Distortion was

computed as the mean absolute difference be-

tween these two cochleagrams.

(E) Cochleagram distortion by condition. y axis is

oriented to facilitate comparison with (A) and (B).

(F) Scatterplot of human performance and coch-

leagram distortion (i.e., data from A and E). The

rank correlation between distortion and human

performance is substantially lower than that

between human performance and network

performance (C). See Figure S1A for results

when restricting distortion measurements to time-

frequency bins with substantial speech signal

power.

(G) Human performance on the genre classifica-

tion task (n = 111). Same plotting conventions as

(A) were used.

(H) Network performance on the same stimuli and

task. Same plotting conventions as (B) were used.

(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.

Figure 2. Comparison of Human and
Network Behavior: Word and Genre Recog-
nition Tasks
(A) Human performance on word recognition task

(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-

subject SEM.

(B) Network performance on the word recognition

task (using the same stimuli and task as for human

listeners). Same plotting conventions as (A) were

used. Error bars plot SEM, bootstrapped over

stimuli and words.

(C) Scatterplot comparing word recognition per-

formance of human listeners and the network for

each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.

(D) Example cochleagrams of a speech signal with

and without background noise. Distortion was

computed as the mean absolute difference be-

tween these two cochleagrams.

(E) Cochleagram distortion by condition. y axis is

oriented to facilitate comparison with (A) and (B).

(F) Scatterplot of human performance and coch-

leagram distortion (i.e., data from A and E). The

rank correlation between distortion and human

performance is substantially lower than that

between human performance and network

performance (C). See Figure S1A for results

when restricting distortion measurements to time-

frequency bins with substantial speech signal

power.

(G) Human performance on the genre classifica-

tion task (n = 111). Same plotting conventions as

(A) were used.

(H) Network performance on the same stimuli and

task. Same plotting conventions as (B) were used.

(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.

Figure 2. Comparison of Human and
Network Behavior: Word and Genre Recog-
nition Tasks
(A) Human performance on word recognition task

(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-

subject SEM.

(B) Network performance on the word recognition

task (using the same stimuli and task as for human

listeners). Same plotting conventions as (A) were

used. Error bars plot SEM, bootstrapped over

stimuli and words.

(C) Scatterplot comparing word recognition per-

formance of human listeners and the network for

each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.

(D) Example cochleagrams of a speech signal with

and without background noise. Distortion was

computed as the mean absolute difference be-

tween these two cochleagrams.

(E) Cochleagram distortion by condition. y axis is

oriented to facilitate comparison with (A) and (B).

(F) Scatterplot of human performance and coch-

leagram distortion (i.e., data from A and E). The

rank correlation between distortion and human

performance is substantially lower than that

between human performance and network

performance (C). See Figure S1A for results

when restricting distortion measurements to time-

frequency bins with substantial speech signal

power.

(G) Human performance on the genre classifica-

tion task (n = 111). Same plotting conventions as

(A) were used.

(H) Network performance on the same stimuli and

task. Same plotting conventions as (B) were used.

(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.

Figure 2. Comparison of Human and
Network Behavior: Word and Genre Recog-
nition Tasks
(A) Human performance on word recognition task

(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-

subject SEM.

(B) Network performance on the word recognition

task (using the same stimuli and task as for human

listeners). Same plotting conventions as (A) were

used. Error bars plot SEM, bootstrapped over

stimuli and words.

(C) Scatterplot comparing word recognition per-

formance of human listeners and the network for

each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.

(D) Example cochleagrams of a speech signal with

and without background noise. Distortion was

computed as the mean absolute difference be-

tween these two cochleagrams.

(E) Cochleagram distortion by condition. y axis is

oriented to facilitate comparison with (A) and (B).

(F) Scatterplot of human performance and coch-

leagram distortion (i.e., data from A and E). The

rank correlation between distortion and human

performance is substantially lower than that

between human performance and network

performance (C). See Figure S1A for results

when restricting distortion measurements to time-

frequency bins with substantial speech signal

power.

(G) Human performance on the genre classifica-

tion task (n = 111). Same plotting conventions as

(A) were used.

(H) Network performance on the same stimuli and

task. Same plotting conventions as (B) were used.

(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.

Figure 2. Comparison of Human and
Network Behavior: Word and Genre Recog-
nition Tasks
(A) Human performance on word recognition task

(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-

subject SEM.

(B) Network performance on the word recognition

task (using the same stimuli and task as for human

listeners). Same plotting conventions as (A) were

used. Error bars plot SEM, bootstrapped over

stimuli and words.

(C) Scatterplot comparing word recognition per-

formance of human listeners and the network for

each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.

(D) Example cochleagrams of a speech signal with

and without background noise. Distortion was

computed as the mean absolute difference be-

tween these two cochleagrams.

(E) Cochleagram distortion by condition. y axis is

oriented to facilitate comparison with (A) and (B).

(F) Scatterplot of human performance and coch-

leagram distortion (i.e., data from A and E). The

rank correlation between distortion and human

performance is substantially lower than that

between human performance and network

performance (C). See Figure S1A for results

when restricting distortion measurements to time-

frequency bins with substantial speech signal

power.

(G) Human performance on the genre classifica-

tion task (n = 111). Same plotting conventions as

(A) were used.

(H) Network performance on the same stimuli and

task. Same plotting conventions as (B) were used.

(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.

Figure 2. Comparison of Human and
Network Behavior: Word and Genre Recog-
nition Tasks
(A) Human performance on word recognition task

(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-

subject SEM.

(B) Network performance on the word recognition

task (using the same stimuli and task as for human

listeners). Same plotting conventions as (A) were

used. Error bars plot SEM, bootstrapped over

stimuli and words.

(C) Scatterplot comparing word recognition per-

formance of human listeners and the network for

each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.

(D) Example cochleagrams of a speech signal with

and without background noise. Distortion was

computed as the mean absolute difference be-

tween these two cochleagrams.

(E) Cochleagram distortion by condition. y axis is

oriented to facilitate comparison with (A) and (B).

(F) Scatterplot of human performance and coch-

leagram distortion (i.e., data from A and E). The

rank correlation between distortion and human

performance is substantially lower than that

between human performance and network

performance (C). See Figure S1A for results

when restricting distortion measurements to time-

frequency bins with substantial speech signal

power.

(G) Human performance on the genre classifica-

tion task (n = 111). Same plotting conventions as

(A) were used.

(H) Network performance on the same stimuli and

task. Same plotting conventions as (B) were used.

(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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Word Manifolds’ capacity improves across layers 

Ø Untangling seen in visual systems also occurs in auditory deep networks
Ø Capacity is flat at initial weights, and is increasing across layers  after the training
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Figure 1: Architecture of the DS2 system used to train on both English and Mandarin speech. We explore
variants of this architecture by varying the number of convolutional layers from 1 to 3 and the number of
recurrent or GRU layers from 1 to 7.

The two sets of activations are summed to form the output activations for the layer hl =
�!
h l +
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h l.

The function g(·) can be the standard recurrent operation
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h l

t = f(W lhl�1
t +

�!
U l�!h l

t�1 + bl) (3)

where W l is the input-hidden weight matrix,
�!
U l is the recurrent weight matrix and bl is a bias term.

In this case the input-hidden weights are shared for both directions of the recurrence. The function
g(·) can also represent more complex recurrence operations such as the Long Short-Term Memory
(LSTM) units [30] and the gated recurrent units (GRU) [11].

After the bidirectional recurrent layers we apply one or more fully connected layers with

hl
t = f(W lhl�1

t + bl) (4)

The output layer L is a softmax computing a probability distribution over characters given by

p(`t = k|x) = exp(wL
k · hL�1

t )
P

j exp(w
L
j · hL�1

t )
(5)

The model is trained using the CTC loss function [22]. Given an input-output pair (x, y) and the
current parameters of the network ✓, we compute the loss function L(x, y; ✓) and its derivative with
respect to the parameters of the network r✓L(x, y; ✓). This derivative is then used to update the
network parameters through the backpropagation through time algorithm.

In the following subsections we describe the architectural and algorithmic improvements made rel-
ative to DS1 [26]. Unless otherwise stated these improvements are language agnostic. We report
results on an English speaker held out development set which is an internal dataset containing 2048
utterances of primarily read speech. All models are trained on datasets described in Section 5.
We report Word Error Rate (WER) for the English system and Character Error Rate (CER) for the
Mandarin system. In both cases we integrate a language model in a beam search decoding step as
described in Section 3.8.
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Word Manifolds’ capacity improves across layers 

Ø Manifold Dimension, Radius, and Correlations all decrease across 
layers after training (similar to Visual deep networks)  
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Figure 1: Architecture of the DS2 system used to train on both English and Mandarin speech. We explore
variants of this architecture by varying the number of convolutional layers from 1 to 3 and the number of
recurrent or GRU layers from 1 to 7.

The two sets of activations are summed to form the output activations for the layer hl =
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The function g(·) can be the standard recurrent operation
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h l

t = f(W lhl�1
t +

�!
U l�!h l

t�1 + bl) (3)

where W l is the input-hidden weight matrix,
�!
U l is the recurrent weight matrix and bl is a bias term.

In this case the input-hidden weights are shared for both directions of the recurrence. The function
g(·) can also represent more complex recurrence operations such as the Long Short-Term Memory
(LSTM) units [30] and the gated recurrent units (GRU) [11].

After the bidirectional recurrent layers we apply one or more fully connected layers with

hl
t = f(W lhl�1

t + bl) (4)

The output layer L is a softmax computing a probability distribution over characters given by

p(`t = k|x) = exp(wL
k · hL�1

t )
P

j exp(w
L
j · hL�1

t )
(5)

The model is trained using the CTC loss function [22]. Given an input-output pair (x, y) and the
current parameters of the network ✓, we compute the loss function L(x, y; ✓) and its derivative with
respect to the parameters of the network r✓L(x, y; ✓). This derivative is then used to update the
network parameters through the backpropagation through time algorithm.

In the following subsections we describe the architectural and algorithmic improvements made rel-
ative to DS1 [26]. Unless otherwise stated these improvements are language agnostic. We report
results on an English speaker held out development set which is an internal dataset containing 2048
utterances of primarily read speech. All models are trained on datasets described in Section 5.
We report Word Error Rate (WER) for the English system and Character Error Rate (CER) for the
Mandarin system. In both cases we integrate a language model in a beam search decoding step as
described in Section 3.8.

5

DRNN
(Speech to 

Text)

Due to reduction in manifold dimension, radius, correlations

Cory Stephenson, Jenelle Feather, Suchismita Padhy, Oguz Elibol, Hanlin Tang, Josh McDermott, SueYeon Chung**.
Untangling in Invariant Speech Recognition. NeurIPS 2019 



Untangling speech objects in multiple scales in DRNN

• Speech objects in different scales emerge across layers in Deepspeech2
• Phonemes, Words, and Part-of-Speech (POS) Manifolds 

Phonemes: “aa”, “ch”, ”b”,”d”, … 

Words: “carry”, “dark”, “every”,…

Part of speech: “Noun”,
“Verb”, ”Pronoun”, … 

Cory Stephenson, Jenelle Feather, Suchismita Padhy, Oguz Elibol, Hanlin Tang, Josh McDermott, SueYeon Chung**.
Untangling in Invariant Speech Recognition. NeurIPS 2019



Word Untangling Across Recurrent Timesteps in DRNN

time
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Figure 1: Illustration of word manifolds. (a) highly tangled manifolds, in low capacity regime (b)
untangled manifolds, in high capacity regime (c) Manifold Dimension captures the projection of a
Gaussian vector onto the direction of an anchor point, and Manifold Radius captures the norm of an
anchor point in manifold subspace. (d) Illustration of untanglement of words over time

We measure these properties under different manifold types, including categories such as phonemes90

and words, or linguistic feature categories such as part-of-speech tags. This allows us to quantify91

the amount of invariant object information and the characteristics of the emergent geometry in the92

representations learned by the speech models.93

2.1 Object Manifold Capacity and Mean Field Theoretic manifold analysis94

In a system where P object manifolds are represented in N ambient dimensions, the ‘load’ in the95

system is defined by ↵ = P/N . When ↵ is small, i.e. few object manifolds are in a high ambient96

dimension, it’s easy to find a separating hyperplane for a random dichotomy2 of the manifolds.97

When ↵ is large, too many categories are squeezed in a small ambient dimension, rendering the98

representations highly inseparable. Manifold capacity refers to the critical load, ↵C = P/N , defined99

by the critical number of object manifolds, P , that can be linearly separated given N features. Above100

↵C , most dichotomies are inseparable, and below ↵C , most are separable[24, 25]. This framework101

generalizes the notion of the perceptron storage capacity [26] from points to manifolds, re-defining102

the unit for counting capacity as ‘object manifolds’ rather than individual points. The manifold103

capacity thus serves as a measure of the linearly decodable information about object identity per unit,104

and it can be measured from data in two ways:105

1. Empirical Manifold Capacity, ↵SIM : the manifold capacity can be measured empirically106

with a bisection search to find the critical number of features N such that the fraction of107

linearly separable random dichotomies is close to 1/2.108

2. Mean Field Theoretic Manifold Capacity, ↵MFT : can be estimated using the replica109

mean field formalism with the framework introduced by [24, 25]. ↵MFT is estimated from110

the statistics of anchor points (shown in Fig. 1(c)), s̃, a representative point for a linear111

classification3.112

The manifold capacity for point-cloud manifolds is lower bounded by the case where there is no113

manifold structure. This lower bound is given by ↵LB = P/N = 2/M due to Cover’s theorem [24].114

In this work, we show ↵MFT /↵LB for a comparison between datasets with different lower bounds.115

Manifold capacity is closely related to the underlying geometric properties of the object manifolds.116

Recent work demonstrates that the manifold classification capacity can be predicted by an object117

manifold’s Manifold Dimension, DM , Manifold Radius, RM , and the correlations between the118

centroids of the manifolds [23, 24, 25]. These geometrical properties capture the statistical properties119

of the anchor points, the representative support vectors of each manifold relevant for the linear120

classification, which change as the choice of other manifolds vary.121

Manifold Dimension, DM : DM captures the dimensions realized by the anchor point from the122

guiding Gaussian vectors shown in Fig. 1(c), and estimates the average embedding dimension of the123

manifold contributing to the classification. This is upper bounded by min(M, N), where M is the124

2Here, we define a random dichotomy as an assignment of random ±1 labels to each manifold
3See SM for exact relationship between s̃ and capacity, the outline of the code, and a demonstration that

MFT manifold capacity matches the empirical capacity (given in Fig. SM7)

3

• Recurrent timesteps “untangle” word objects

limitation (e.g., the number of neurons). The resulting network
architecture is consistent with recent evidence for segregated
speech and music pathways in non-primary auditory cortex
(Angulo-Perkins et al., 2014; Leaver and Rauschecker, 2010;
Norman-Haignere et al., 2015; Tierney et al., 2013).

Comparison of Model and Human Behavior
A complete model of the auditory system should replicate
human auditory behavior. We thus began by measuring human
performance for the word and genre tasks, comparing both
absolute performance and the pattern of errors to that of the
network. For the word classification task, listeners typed what
they heard using an interface that auto-completed the 587
words. For the genre classification task, listeners selected the
five most likely genres for the 2 s excerpt they heard. A ‘‘top
5’’ task was used to ensure that the task was reasonably well
defined given overlap between different genres (e.g., ‘‘New
Age’’ versus ‘‘Ambient’’; see Figure S6B for overlap matrix).

In both cases the speech and music excerpts were presented
in different types of background noise at a range of SNRs.
We measured network performance on the same stimuli
and tasks.
Word Recognition Behavioral Comparison
Human listeners’ word recognition performance improved with
SNR, as expected, but some types of background noise
impaired performance more than others (Figure 2A). The
network exhibited similar absolute performance levels and
similar dependence of performance on background noise
(r2 = 0.92, p < 10!13; Figures 2B and 2C). The pattern of perfor-
mance was not explained by simple measures of distortion in
the cochlear representation of speech (r2 = 0.37, lower than
that with network performance, p < 10!4; Figures 2D–2F). Fig-
ure S1A shows similar results when restricting the distortion
measure to only those cochleagram bins with substantial
speech energy; Figure S1B shows the results of distortion
measured in network layers.

Figure 2. Comparison of Human and
Network Behavior: Word and Genre Recog-
nition Tasks
(A) Human performance on word recognition task

(n = 18). y axis plots proportion of words correctly

identified; x axis plots signal-to-noise ratio (SNR) of

the speech signal. Each line plots performance for

a particular type of background noise. Gray point

on right plots performance without background

noise (i.e., infinite SNR). Error bars plot within-

subject SEM.

(B) Network performance on the word recognition

task (using the same stimuli and task as for human

listeners). Same plotting conventions as (A) were

used. Error bars plot SEM, bootstrapped over

stimuli and words.

(C) Scatterplot comparing word recognition per-

formance of human listeners and the network for

each background type at each SNR (i.e., identical

data as A and B). Dashed line indicates unity.

(D) Example cochleagrams of a speech signal with

and without background noise. Distortion was

computed as the mean absolute difference be-

tween these two cochleagrams.

(E) Cochleagram distortion by condition. y axis is

oriented to facilitate comparison with (A) and (B).

(F) Scatterplot of human performance and coch-

leagram distortion (i.e., data from A and E). The

rank correlation between distortion and human

performance is substantially lower than that

between human performance and network

performance (C). See Figure S1A for results

when restricting distortion measurements to time-

frequency bins with substantial speech signal

power.

(G) Human performance on the genre classifica-

tion task (n = 111). Same plotting conventions as

(A) were used.

(H) Network performance on the same stimuli and

task. Same plotting conventions as (B) were used.

(I) Scatterplot comparing genre classification performance of human listeners and the network for each background type at each SNR. Identical data as (G) and

(H) are shown. Dashed line indicates unity.

(J) Genre confusion matrix for human listeners. Each column indicates the correct genre, and each row indicates the selected genre. Saturation denotes

frequency with which human listeners selected a genre label for exemplars of a particular genre (Z scored within columns).

(K) Network confusion matrix. Same plotting conventions as (J) were used.
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Q: What is the role of 
recurrent timesteps in 
untangling?  



Outline

1. Introduction 

2. Theory of Linear Classification of Object Manifolds

3. Object Manifolds in Visual Hierarchy

4. Object Manifolds in Auditory Hierarchy 

5. Untangling in Deep Language Representations 

6. Understanding Generalization Dynamics using Object Manifolds 

Jonathan Mamou*, Hang Le*, Miguel Del Rio, Cory Stephenson, Hanlin Tang, Yoon Kim, SueYeon Chung
Emergence of Separable Manifolds in Deep Language Representations. (ICML 2020)



BERT: Bidirectional Encoder Representations from 
Transformers
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Q: do language manifolds emerge across layers of 
BERT? 



Language object class manifolds in layers in BERT 

• Defined on masked tokens
• Manifolds defined with 

Word, POS, Semantic Tag, 
Named Entity Recognition 
(NER) improve in capacity 
across layers. 

• Exception: dependency 
depth

• Improved capacity is due to 
reduction in radius, 
dimension, center 
correlations of manifolds 

Jonathan Mamou*, Hang Le*, Miguel Del Rio, Cory Stephenson, Hanlin Tang, Yoon Kim, SueYeon Chung
Emergence of Separable Manifolds in Deep Language Representations. (ICML 2020)



Outline

1. Introduction 

2. Theory of Linear Classification of Object Manifolds

3. Object Manifolds in Visual Hierarchy

4. Object Manifolds in Auditory Hierarchy 

5. Untangling in Deep Language Representations 

6. Generalization vs. Memorization Manifolds in DNNs

Cory Stephenson, Suchi Padhy, Abhi Ganesh, Yue Hui, Hanlin Tang, SueYeon Chung
On the geometry of generalization and memorization in deep neural networks. (ICLR 2021)



Probing the structure of generalization vs. memorization 

Memorization: defined as ‘behaviors exhibited by DNNs trained on 
noise/random labels’. (Arpit and Bengio et al, 2017) 

Experiment: Train DNNs with Images where 50% of the labels are shuffled

Analysis: define object manifolds for:
(1) unpermuted labels, (2) permuted labels
(3) restored labels (while trained with permuted labels)    

(CIFAR100)
Cory Stephenson, Suchi Padhy, Abhi Ganesh, Yue Hui, Hanlin Tang, SueYeon Chung
On the geometry of generalization and memorization in deep neural networks. (ICLR 2021)



• Decrease in test performance coincide with decrease in accuracy for the ‘restored’ labels
& increase in accuracy for ‘permuted’ labels 

• ‘Unpermuted’ (easy) examples learn first, ‘permuted’ (hard) examples learn later 

Probing the structure of generalization vs. memorization 

• ‘permuted’ examples haven’t been learned 
• ‘restored’ manifolds similar to ‘test’ manifolds 

• Most memorization occurs in the final layers
• Early layers ignore the effect of memorization 

Cory Stephenson, Suchi Padhy, Abhi Ganesh, Yue Hui, Hanlin Tang, SueYeon Chung
On the geometry of generalization and memorization in deep neural networks. (ICLR 2021)



Summary
- Generalized statistical mechanical theory of linear classification of points to that of 

general randomly oriented manifolds. 

- Capacity of category manifolds measures invariant object information in features 

- Manifold capacity is predicted by the effective size (𝐑𝐌), dimensionality (𝐃𝐌), 
and correlations of the perceptual manifolds in neural representation 

- Analysed neural manifold geometry in deep neural networks & neural data 

- Manifold properties change in the direction to improve capacity across visual hierarchy in 
visual deep networks and macaque visual cortex (reduction in manifold dimension, radius 
and center-center correlations) 

- Untangling phenomenon found in vision seems to also happen in speech and language 
processing deep networks, though not explicitly trained 

- Structure of features relevant for generalization vs. memorization can be analysed 
geometrically. 

- Geometry reveals that most of the memorization occurs in the final layers, and during the final epochs. 

- DNNs are only a testbed, originally designed for neural data 

- Many more applications: olfaction, learning dynamics, motor motifs… 
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