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Mo#va#ons: Real-World Decision Making is Hard
• Q: Can we broaden the successful horizon of deep learning?

Atari AlphaGo

Manipulator
“Can we really use ML in safety cri2cal system?”
Richard Murray, IPAM ICLO workshop 2020

“I want to use deep learning to op5mize the design,
manufacturing and opera5on of our aircra;s. But I
need some guarantees.” -- Aerospace Director

https://youtu.be/Wi8Y---ce28


Where are the Challenges from?
• Uncertain:es
• Modelling mismatch, sim2real gap
• Delay, motor failures, satura:ons, …

• Limited computa:onal power
• Data collec:on is also not cheap Crazyflie, weight 34g

• We need some “formal” interpretability 
• E.g., stability, safety
• Neural networks are “hard” to control

NN landscape, Li et al., NeurIPS 2018

R.I.P., propellers



Idea: Control Theory Meets Machine Learning
• A typical pipeline in control

System 
Iden2fica2on

Control 
Synthesis

Dynamical
System

+ Formal guarantees
− System Id is o3en expensive, inaccurate and hard to generalize
− Control synthesis might be too complex or conserva=ve

• A typical pipeline in learning

PoliciesData Learning

+ Flexible, generalizable, transferable, … 
− No ”formal” interpretability
− DL is data hungry

wind tunnel test



This Lecture

• Topic I: dynamics-level residual learning
• Topic II: ac:on-level residual learning
• Topic III: program-level residual learning

* Not formal classifica:ons. The boundaries are NOT clear!  

Physics

“Mixed” Policies

Data Learning

learning and control theories integrated

New Capability!

“control-seman2c” regulariza2on



Many People Work on this Topic! 

Control Meets Learning seminar series
L4DC conference

courses: Caltech CS159, Stanford AA 203, UPenn ESE 68o, …

workshops at CDC, NeurIPS, ICML, ICRA, RSS…



Topic I: Dynamics-level Residual Learning

Physics
Control Synthesis 
Mo2on Planning

Mixed & Modularized
Dynamical Systems

Data Learning
“control-seman2c” regulariza2on

learning & control theore2cal results integrate nicely

𝑥̇ = 𝑓 𝑥, 𝑢 + 𝑔 𝑥, 𝑢, 𝑡 unknown

𝑓 𝑥, 𝑢

𝑔 𝑥, 𝑢, 𝑡

• Key features we pursue:

Generalizability Guarantees Compact & Efficient 
Representa=on New Capability!

“1+1>2”



Neural-Lander Family

𝑥̇ = 𝑓 𝑥, 𝑢 + 𝑔 𝑥, 𝑢, 𝑡

(Neural-Lander) learn 𝑔 using normalized DNNs 
(Neural-Swarm) learn 𝑔 in heterogeneous swarms
(Neural-Fly) meta-learn 𝑔 and online fast adapt
(Safe Explora8on) safe learn 𝑔 without expertsunknown

Neural-Lander
Shi & Shi & O’Connell et al., ICRA 2019

Neural-Swarm and N-Swarm2
Shi et al., ICRA 2020 and T-RO

Neural-Fly, ongoing work
O’Connell & Shi et al., arXiv preprint

Safe Explora;on
Liu et al., L4DC 2020

Nakka et al., RA-L 2020



Neural-Lander

𝑥̇ = 𝑓 𝑥, 𝑢 + 𝑔 𝑥, 𝑢, 𝑡

(Neural-Lander) learn 𝑔 using normalized DNNs 
(Neural-Swarm) learn 𝑔 in heterogeneous swarms
(Neural-Fly) meta-learn 𝑔 and online fast adapt
(Safe Explora8on) safe learn 𝑔 without expertsunknown

Shi & Shi & O’Connell et al., ICRA 2019

ground effect



Quadrotor Dynamics
𝑥̇ = 𝑓 𝑥, 𝑢 + 𝑔 𝑥, 𝑢

• Dynamics

• 𝑥 = 𝐩, 𝐯, 𝑅,𝝎 , 𝑢 = [𝑛'(, 𝑛((, 𝑛)(, 𝑛*(]

• 𝑓(𝑥, 𝑢) is the nominal dynamics
• 𝑔(𝑥, 𝑢) is the residual dynamics (e.g., modelling mismatch, ground effect)

much harder to 
model!



Controller Design (Sketch)

𝑢 = 𝜋(𝑥, 𝑥! , ,𝐟" 𝑥, 𝑢 )

• Challenge I: sample efficiency
• Learning 𝑓 𝑥, 𝑢 + 𝑔 𝑥, 𝑢 needs 1 hour flight data
• Learning the residual 𝑔 𝑥, 𝑢 only needs ~5 mins

#𝐟! is the learned dynamics (a neural network) 

• Challenge II: control alloca=on
• Non-affine control synthesis problem ( 2𝐟+ explicitly depends on 𝑢 )

• Challenge III: stability & robustness in control / generaliza=on in learning

spectrally 
normalized 
DNNs

A feedback-lineariza2on-style nonlinear controller



Spectral Normaliza#on and Stability Guarantees

𝑢% = 𝜋(𝑥% , 𝑥%! , ,𝐟" 𝑥% , 𝑢%&' )

• Key idea: use 𝑢,-' in the RHS: 

• If the Lipschitz constant of the DNN 2𝐟+ is upper bounded by 𝛾, we have  

• Thus, we trained the 2𝐟+ model using Spectral Normaliza=on (SN)  
• *SN of DNNs also leads to good generaliza,on (stability in a learning-theore=c 

sense) [Bartle6 & Foster & Telgarsky, NeurIPS 2017]

control gain Lip constant approxima2on error of DNN ( #𝐟! − 𝐟! )

smoothness of the 
desired trajectory 𝑥"#

tracking error



Training Result Visualiza#on
• Training data: manually fly the drone for 5 minutes 

compare with an exis2ng ground effect model 

2D heatmap of the learned #𝐟!

*Spectrally normalized DNNs can 
guarantee generaliza2on (Bartle6 et al., 
NeurIPS 2020; Liu & Shi et al., L4DC 2020)

w/ SN w/o SN



Trajectory Tracking Performance

“table effect”: need to recollect data and 
retrain #𝐟!



Neural-Lander Takeaways

Shi & Shi & O’Connell et al., ICRA 2019

Physics
Mixed & Modularized

Dynamical System
#𝐟! 𝑥, 𝑢 spectral normaliza2on

stability guarantee

𝑢! = 𝜋(𝑥! , 1𝐟" 𝑥! , 𝑢!#$ )

Generalizability Guarantees

Smooth, Safe, 
Fast Landing

only 5min data



Neural-Swarm

𝑥̇ = 𝑓 𝑥, 𝑢 + 𝑔 𝑥, 𝑢, 𝑡

(Neural-Lander) learn 𝑔 using normalized DNNs 
(Neural-Swarm) learn 𝑔 in heterogeneous swarms
(Neural-Fly) meta-learn 𝑔 and online fast adapt
(Safe Explora8on) safe learning 𝑔 without expertsunknown

Shi et al., ICRA 2020; Shi et al., accepted by IEEE T-RO



Mo#va#ons

• Interac=on ma]ers
• Prior works require ~60cm safe 

ver=cal distance

• How can we model the interac=on in:
• two and more drones?
• heterogeneous teams?

0.5 m~9 g thrust loss
(downwash) 

Crazyflie 2.X (34 g)



Models and Challenges

• Heterogeneity
• Generaliza=on in the number of robots
• What if we only have data from 1-3 

robots?
• Limited computa=on power
• Requires decentraliza=on

14 small robots and 2 large robots

nominal dynamics of type 𝐼 𝑖



Heterogeneous Permuta#on Invariance

• Heterogeneous permuta=on-invariant func=on: ℎ 𝑥, 𝑦 = max 2𝑥', 2𝑥( +max{𝑦', 𝑦(}
• We generalize the “Deep Sets” architecture:

1

2

3

2

1

3

Theorem (Shi et al., accepted by T-RO; generalized Zaheer et al., NeurIPS 2017)  
Any con=nuous, heterogeneous permuta=on-invariant func=on [ 2𝐟+; >𝝉+] can 
be approximated by 

encode type 𝐼 𝑗 neighbors 

superposi;on in the latent space

decode for type 𝐼 𝑖Interac;on force on type 𝐼 𝑖

• We only need 2𝐾 neural networks for 𝐾 types 



Use-Case I: Control

• Baseline (BL) is a SOTA nonlinear controller with delay compensa=on



Generaliza#on

• We only collected 1-3 robots’ data in training
• Can it generalize?

5-robot swapping task (2 larges, 3 smalls) 16-robot 3-ring tracking task (2 larges, 14 smalls)
• 24cm minimum ver2cal distance
• Prior works: ~60cm in a homogeneous team



Use-Case II: Interac#on-Aware Mo#on Planning
• Integrate learned interac=ons with a two-stage planner
• Stage I: AO-RRT type sampling-based planning with learned interac=ons
• Stage II: Op=mal-control-based planning using Sequen=al Convex Programming (SCP)

Stage I: AO-RRT type planning
• Fix the blue robot and plan for the orange

Rejected because introducing too large force  

Stage II: op2mal control
• Nonconvex so we use SCP
• We can explicitly control the interac2on magnitude!



Use-Case II: Interac#on-Aware Mo#on Planning

The large robot is at the bokom The large robot is at the top; 
constraint viola2ons 



Neural-Swarm Takeaways

Shi et al., ICRA 2020; Shi et al., accepted by IEEE T-RO

Physics

Mixed & Modularized
Swarm

permuta2on invariance

stability and safety guarantee

Generalizability

Safe Close-
Proximity Flight

Decentralized Control
2-stage Planning

1-3 robots

5-16 robots

Compact & Efficient 
Representa=on



Neural-Fly (Ongoing Work)

𝑥̇ = 𝑓 𝑥, 𝑢 + 𝑔 𝑥, 𝑢, 𝑡

(Neural-Lander) learn 𝑔 using normalized DNNs 
(Neural-Swarm) learn 𝑔 in heterogeneous swarms
(Neural-Fly) meta-learn 𝑔 and online fast adapt
(Safe Explora8on) safe learning 𝑔 without expertsunknown

O’Connell & Shi et al., ongoing work, preliminary version at arXiv



Meta-Learning Meets Adap#ve Control
• The unknown residual term is governed by the environment 𝑐(𝑡):

𝑥̇ = 𝑓 𝑥, 𝑢 + 𝑔 𝑥, 𝑐(𝑡)

• Example: drone flying in different winds

Caltech CAST fan wall histogram of 𝑔 with different 𝑐

• Key idea:
𝑔 𝑥, 𝑐 ≈ 𝜙 𝑥; 𝜃 𝑎(𝑐)

representa2ons to be meta-learned 

a latent state to be online adapted 
(using adap2ve control theory)



Meta-Learning Meets Adap#ve Control
• With the meta-learned representa=on 𝜙 𝑥; 𝜃 , adap=ve control comes into play

𝑎%0' = adapt(𝑎% , 𝜙, 𝑥% , … )

• Control stability and robustness can be guaranteed 



Safe Explora#on

𝑥̇ = 𝑓 𝑥, 𝑢 + 𝑔 𝑥, 𝑢, 𝑡

(Neural-Lander) learn 𝑔 using normalized DNNs 
(Neural-Swarm) learn 𝑔 in heterogeneous swarms
(Neural-Fly) meta-learn 𝑔 and online fast adapt
(Safe Explora8on) safe learning 𝑔 without expertsunknown

Liu et al., L4DC 2020, Nakka et al., RA-L 2020



Mo#va#ons and Challenges

Liu et al., L4DC 2020, Nakka et al., RA-L 2020

𝑃789(𝑥)

𝑃,8: 𝑥

• How to collect data without experts? 
• Explora=on v.s. exploita=on: how to quan=fy uncertainty under domain shi3?

covariate shi3: 𝑃 𝑦 𝑥 is fixed, but 𝑃,8: 𝑥 ≠ 𝑃789(𝑥)

• Key idea: using robust regression to quan=fy uncertainty under covariate shi3



Results
• Determinis=c safety constraints and planning in a trajectory pool [Liu et al., L4DC 2020]

• Informa=on-cost stochas=c op=mal control with chance-constraints [Nakka et al., RA-L 2020]



Recap for Topic I: Dynamics-Level Residual Learning 

• Key features we pursue:

Physics
Control Synthesis 
Mo2on Planning

Mixed & Modularized
Dynamical Systems

Data Learning
“control-seman2c” regulariza2on

Generalizability Guarantees Compact & Efficient 
Representa=on

learning & control theore2cal results integrate nicely

New Capability
in Robo=cs!



Some Other “Control-seman#c” Regulariza#on
• Learning stabilizable dynamics

• Learning Lagrangian systems

• Could be either hard constraints or regulariza:ons

covering all (rigid) robo2c systems



References in Topic I: Dynamics-Level Residual Learning
• Zeng, A., Song, S., Lee, J., Rodriguez, A., & Funkhouser, T. (2020). Tossingbot: Learning to throw arbitrary 

objects with residual physics. IEEE TransacPons on RoboPcs
• G. Shi*, X. Shi*, M. O’Connell*, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue, S.-J. Chung, “Neural Lander: 

Stable Drone Landing Control Using Learned Dynamics”, ICRA 2019
• G. Shi, W. Hoenig, Y. Yue, S.-J. Chung, “Neural-Swarm: Decentralized Close-Proximity Mul2rotor Control 

Using Learned Interac2ons”, ICRA 2020
• G. Shi, W. Hoenig, X. Shi, Y. Yue, S.-J. Chung, “Neural-Swarm2: Planning and Control of Heterogeneous

Mul2rotor Swarms Using Learned Interac2ons”, accepted by T-RO, 2021
• M. O’Connell*, G. Shi, X. Shi, S.-J. Chung, “Meta-Learning-Based Robust Adap2ve Flight Control Under 

Uncertain Wind Condi2ons”, arXiv preprint
• A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, Y. Yue, “Robust Regression for Safe Explora2on in Control”, L4DC

2020
• Y. K. Nakka, A. Liu, G. Shi, A. Anandkumar, Y. Yue, S.-J. Chung, “Chance-Constrained Trajectory Op2miza2on 

for Safe Explora2on and Learning of Nonlinear Systems”, RA-L 2020
• P. Bartlek, D. Foster, D. Telgarsky, “Spectrally-normalized Margin Bounds for Neural Networks”, NeurIPS 2017
• M. Zaheer, S. Kokur, S. Ravanbhakhsh, B. Póczos, R. Salakhutdinov, A. J. Smola, “Deep Sets”, NeurIPS 2017
• C. Finn, P. Abbeel, S. Levine, "Model-Agnos2c Meta-Learning for Fast Adapta2on of Deep Networks”, ICML 

2017
• H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein, “Visualizing the Loss Landscape of Neural Nets”, NeurIPS 2018



Topic II: Ac#on-level Residual Learning

Model-based 
Controller

Data Learning

𝑢1

𝑢2

control regulariza2on

Data Learning 𝑢2 Model-based Filter

control regulariza2on

• Two popular pipelines: 1) superposi:on and 2) filtering
• Some materials from hAp://www.yisongyue.com/talks/safety_cri;cal_learning.pdf

http://www.yisongyue.com/talks/safety_critical_learning.pdf


Example 1: Deep RL + Hand-engineered Controller 

hand-engineered controller

• In the training process, 𝜋3 is 
“encoded” in the dynamics



Example 2: Smooth Imita#on Learning



Example 3: Control Regulariza#on Reduces Variance in RL



Example 4: Model-based Controller as a “Filter”

CBF
safety 

constraints



Topic III: Program-level Residual Learning

(Par2ally) Unknown Systems
𝑥̇ = 𝑓 𝑥, 𝑢 + 𝑔 𝑥, 𝑢, 𝑡

Data Learning

Some Program for Control

• The “program” design is on a case-by-case basis
• Algorithm design and analysis are not as clear as the dynamics-

level and ac:on-level residual learning
• A (very) general framework:



Example 1: DNN to “Adapt” the Reference Signal

• A (very) general framework:



Example 2: Learning Control Lyapunov Func#on Residual

• A (very) general framework:

Residual dynamics

If we have a control 
Lyapunov func2on 𝑉, we 
can just learn the projec2on

• In control we only need to make sure 



Example 3: Differen#able MPC



Summary

• Topic I: dynamics-level residual learning
• Topic II: ac:on-level residual learning
• Topic III: program-level residual learning
Some direc:ons:
• Trade-offs (e.g., sampling complexity)?
• Combine control and learning theory (e.g., 

generaliza:on) 

Physics

“Mixed” Policies

Data Learning

learning and control theories integrated

New Capability!

“control-seman2c” regulariza2on

approxima2on error of DNN ( #𝐟! − 𝐟! )


