Deep Residual Learning for Control

Shi & Shi & O'Connell et al., ICRA' 19

Shi et al., ICRA' 20, T-RO

O'Connell & Shi et al., ongoing work

Zeng et al., RSS' 19, T-RO

Caltech CS 159 Guest Lecture

Motivations: Real-World Decision Making is Hard

Q: Can we broaden the successful horizon of deep learning?

Atari

AlphaGo

Manipulator

Question: How safe do autonomous vehicles need to be?

- As safe as human-driven cars (7 deaths every 10⁹ miles)
- As safe as buses and trains (0.1-0.4 deaths every 10⁹ miles)
- As safe as airplanes (0.07 deaths every 10⁹ miles)

I. Savage, "Comparing the fatality risks in United States transportation across modes and over time", Research in Transportation Economics, 43:9-22, 2013.

"Can we really use ML in safety critical system?" Richard Murray, IPAM ICLO workshop 2020

Where are the Challenges from?

- Uncertainties
 - Modelling mismatch, sim2real gap
 - Delay, motor failures, saturations, ...

- Limited computational power
 - Data collection is also not cheap

- We need some "formal" interpretability
 - E.g., stability, safety
 - Neural networks are "hard" to control

Crazyflie, weight 34g

R.I.P., propellers

NN landscape, Li et al., NeurIPS 2018

Idea: Control Theory Meets Machine Learning

• A typical pipeline in control

- + Formal guarantees
- System Id is often expensive, inaccurate and hard to generalize
- Control synthesis might be too complex or conservative
- A typical pipeline in learning

wind tunnel test

- + Flexible, generalizable, transferable, ...
- No "formal" interpretability
- DL is data hungry

This Lecture

- Topic I: dynamics-level residual learning
- Topic II: action-level residual learning
- Topic III: program-level residual learning
- * Not formal classifications. The boundaries are NOT clear!

Many People Work on this Topic!

Control Meets Learning seminar series

Advanced Topics in Machine Learning CS 159 · Caltech · Spring 2021 Control Learning

AA 203: Optimal and Learning-Based Control

Spring 2021

ESE 680, Fall 2019 – Learning and Control

courses: Caltech CS159, Stanford AA 203, UPenn ESE 68o, ...

Learning for Dynamics and Control (L4DC)

May 30 & 31, 2019 at the Ray and Maria Stata Center Massachusetts Institute of Technology, Cambridge, MA

LEARNING FOR DYNAMICS & CONTROL (L4DC)

Online June 11-12th, 2020

3rd Annual Learning for Dynamics & Control Conference June 7 - 8, 2021 | ETH Zurich, Switzerland Virtual

L4DC conference

Workshop on Learning for Control

57th IEEE Conference on Decision and Control Miami Beach, Florida, December 16, 2018

workshops at CDC, NeurIPS, ICML, ICRA, RSS...

Topic I: Dynamics-level Residual Learning $\dot{x} = f(x, u) + \left| g(x, u, t) \right|$ unknown learning & control theoretical results integrate nicely f(x,u)Physics **Control Synthesis** Mixed & Modularized g(x, u, t)**Motion Planning Dynamical Systems** Learning Data "control-semantic" regularization

• Key features we pursue:

Neural-Lander Family

(Neural-Lander) learn *g* using normalized DNNs (Neural-Swarm) learn *g* in heterogeneous swarms (Neural-Fly) meta-learn *q* and online fast adapt (Safe Exploration) safe learn g without experts

Neural-Lander Shi & Shi & O'Connell et al., ICRA 2019

Neural-Swarm and N-Swarm2 Shi et al., ICRA 2020 and T-RO

Variance ninal Posi 20.7

Neural-Fly, *ongoing work* O'Connell & Shi et al., arXiv preprint

Safe Exploration *Liu et al., L4DC 2020* Nakka et al., RA-L 2020

Neural-Lander $\dot{x} = f(x, u) + \frac{g(x, u, t)}{unknown}$

(Neural-Lander) learn *g* using normalized DNNs (Neural-Swarm) learn *g* in heterogeneous swarms (Neural-Fly) meta-learn *g* and online fast adapt (Safe Exploration) safe learn *g* without experts

- ground effect

Shi & Shi & O'Connell et al., ICRA 2019

Quadrotor Dynamics

$$\dot{x} = f(x, u) + g(x, u)$$

•
$$x = [\mathbf{p}, \mathbf{v}, R, \boldsymbol{\omega}], u = [n_1^2, n_2^2, n_3^2, n_4^2]$$

• Dynamics

$$\dot{\mathbf{p}} = \mathbf{v}, \qquad m\dot{\mathbf{v}} = m\mathbf{g} + R\mathbf{f}_u + \mathbf{f}_a$$
$$\dot{R} = RS(\boldsymbol{\omega}), \quad J\dot{\boldsymbol{\omega}} = J\boldsymbol{\omega} \times \boldsymbol{\omega} + \boldsymbol{\tau}_u + \boldsymbol{\tau}_a$$

model!

- f(x, u) is the nominal dynamics
- g(x, u) is the **residual** dynamics (e.g., modelling mismatch, ground effect)

Controller Design (Sketch)

A feedback-linearization-style nonlinear controller $u = \pi(x, x^d, \hat{\mathbf{f}}_a(x, u))$ $\hat{\mathbf{f}}_a$ is the learned dynamics (a neural network)

- Challenge I: sample efficiency
 - Learning f(x, u) + g(x, u) needs **1 hour** flight data
 - Learning the residual g(x, u) only needs ~5 mins
- Challenge II: control allocation
 - Non-affine control synthesis problem (\hat{f}_a explicitly depends on u)
- Challenge III: stability & robustness in control / generalization in learning -

spectrally normalized DNNs

Spectral Normalization and Stability Guarantees

• Key idea: use u_{t-1} in the RHS:

$$u_t = \pi(x_t, x_t^d, \hat{\mathbf{f}}_a(x_t, u_{t-1}))$$

• If the Lipschitz constant of the DNN \hat{f}_a is upper bounded by γ , we have

$$\begin{aligned} & \text{tracking error control gain} & \text{Lip constant} & \text{approximation error of DNN} (\|\hat{\mathbf{f}}_a - \mathbf{f}_a\|) \\ & \|\mathbf{s}(t)\| \leq \|\mathbf{s}(t_0)\| \exp\left(-\frac{\lambda - L_a\rho}{m}(t - t_0)\right) + \frac{\epsilon_m}{\lambda - L_a\rho} \rightarrow \text{smoothness of the} \\ & \text{desired trajectory } x_t^d \end{aligned}$$

- Thus, we trained the \hat{f}_a model using Spectral Normalization (SN)
 - *SN of DNNs also leads to *good generalization* (stability in a learning-theoretic sense) [*Bartlett & Foster & Telgarsky, NeurIPS 2017*]

Training Result Visualization

• Training data: manually fly the drone for 5 minutes

*Spectrally normalized DNNs can guarantee generalization (*Bartlett et al., NeurIPS 2020; Liu & Shi et al., L4DC 2020*)

Trajectory Tracking Performance

"table effect": need to recollect data and

retrain $\hat{\mathbf{f}}_a$

Neural-Lander Takeaways

Shi & Shi & O'Connell et al., ICRA 2019

(Neural-Lander) learn *g* using normalized DNNs (Neural-Swarm) learn *g* in heterogeneous swarms (Neural-Fly) meta-learn *g* and online fast adapt (Safe Exploration) safe learning *g* without experts

Shi et al., ICRA 2020; Shi et al., accepted by IEEE T-RO

Motivations

- Interaction matters
 - Prior works require ~60cm safe vertical distance
- How can we model the interaction in:
 - two and more drones?
 - heterogeneous teams?

Models and Challenges

14 small robots and 2 large robots

$$\begin{split} \mathbf{nominal dynamics of type I(i)} \\ \dot{\mathbf{x}}^{(i)} &= f_{\mathcal{I}(i)}(\mathbf{x}^{(i)}, \mathbf{u}^{(i)}) + \begin{bmatrix} \mathbf{0} \\ \mathbf{f}_{a}^{(i)} \\ \mathbf{0} \\$$

- Heterogeneity
- Generalization in the number of robots
 - What if we only have data from 1-3 robots?
- Limited computation power
 - Requires decentralization

Heterogeneous Permutation Invariance

- Heterogeneous permutation-invariant function: $h(x, y) = \max\{2x_1, 2x_2\} + \max\{y_1, y_2\}$
- We generalize the "Deep Sets" architecture:

• We only need 2K neural networks for K types

Use-Case I: Control

• Baseline (BL) is a SOTA nonlinear controller with delay compensation

Generalization

- We only collected 1-3 robots' data in training
- Can it generalize?

5-robot swapping task (2 larges, 3 smalls)

16-robot 3-ring tracking task (2 larges, 14 smalls)

- 24cm minimum vertical distance
- Prior works: **~60cm** in a homogeneous team

Use-Case II: Interaction-Aware Motion Planning

- Integrate learned interactions with a two-stage planner
- Stage I: AO-RRT type sampling-based planning with learned interactions
- Stage II: Optimal-control-based planning using Sequential Convex Programming (SCP)

Stage I: AO-RRT type planning

• Fix the blue robot and plan for the orange

$$\min_{\mathbf{u}^{(i)},\mathbf{x}^{(i)},t_{f}} \sum_{i=1}^{N} \int_{0}^{t_{f}} \|\mathbf{u}^{(i)}(t)\| dt \tag{6}$$
s.t.
$$\begin{cases}
\text{robot dynamics (4)} & i \in [1,N] \\
\mathbf{u}^{(i)}(t) \in \mathcal{U}^{\mathcal{I}(i)}; \ \mathbf{x}^{(i)}(t) \in \mathcal{X}^{\mathcal{I}(i)} & i \in [1,N] \\
\|\mathbf{p}^{(ij)}\| \ge r^{(\mathcal{I}(i)\mathcal{I}(j))} & i < j, \ j \in [2,N] \\
\|\mathbf{f}_{a}^{(i)}\| \le f_{a,\max}^{\mathcal{I}(i)}; \ \mathbf{x}^{(i)}(t_{f}) = \mathbf{x}_{f}^{\mathcal{I}(i)} & i \in [1,N] \\
\mathbf{x}^{(i)}(0) = \mathbf{x}_{s}^{(i)}; \ \mathbf{x}^{(i)}(t_{f}) = \mathbf{x}_{f}^{(i)} & i \in [1,N] \\
\end{cases}$$

Stage II: optimal control

- Nonconvex so we use SCP
- We can explicitly control the interaction magnitude!

Use-Case II: Interaction-Aware Motion Planning

constraint violations

Neural-Swarm Takeaways

Neural-Fly (Ongoing Work)

 $\dot{x} = f(x, u) + \frac{g(x, u, t)}{\text{unknown}}$

(Neural-Lander) learn *g* using normalized DNNs (Neural-Swarm) learn *g* in heterogeneous swarms (Neural-Fly) meta-learn *g* and online fast adapt (Safe Exploration) safe learning *g* without experts

O'Connell & Shi et al., ongoing work, preliminary version at arXiv

Meta-Learning Meets Adaptive Control

• The unknown residual term is governed by the environment c(t):

$$\dot{x} = f(x, u) + g(x, c(t))$$

• Example: drone flying in different winds

Meta-Learning Meets Adaptive Control

• With the meta-learned representation $\phi(x; \theta)$, adaptive control comes into play

$$a_{t+1} = adapt(a_t, \phi, x_t, ...)$$

• Control stability and robustness can be guaranteed

(Neural-Lander) learn *g* using normalized DNNs (Neural-Swarm) learn *g* in heterogeneous swarms (Neural-Fly) meta-learn *g* and online fast adapt (Safe Exploration) safe learning *g* without experts

Liu et al., L4DC 2020, Nakka et al., RA-L 2020

Motivations and Challenges

- How to collect data without experts?
- Exploration v.s. exploitation: how to quantify uncertainty under domain shift?

covariate shift: P(y|x) is fixed, but $P_{trg}(x) \neq P_{src}(x)$

• Key idea: using robust regression to quantify uncertainty under covariate shift

Results

• Deterministic safety constraints and planning in a trajectory pool [Liu et al., L4DC 2020]

• Information-cost stochastic optimal control with chance-constraints [Nakka et al., RA-L 2020]

Recap for Topic I: Dynamics-Level Residual Learning

• Key features we pursue:

Some Other "Control-semantic" Regularization

• Learning stabilizable dynamics

Learning Stabilizable Nonlinear Dynamics with Contraction-Based Regularization

Sumeet Singh¹, Spencer M. Richards¹, Vikas Sindhwani², Jean-Jacques E. Slotine³, and Marco Pavone¹

$$\min_{\hat{f} \in \mathcal{H}} \sum_{i=1}^{N} \left\| \hat{f}(x_i, u_i) - \dot{x}_i \right\|_2^2 + \mu \|\hat{f}\|_{\mathcal{H}}^2$$

s.t. \hat{f} is stabilizable,

• Learning Lagrangian systems

Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning

Michael Lutter. Christian Ritter & Jan Peters *

covering all (rigid) robotic systems

$$\mathbf{H}(\mathbf{q})\ddot{\mathbf{q}} + \dot{\mathbf{H}}(\mathbf{q})\dot{\mathbf{q}} - \frac{1}{2}\left(\frac{\partial}{\partial \mathbf{q}}\left(\dot{\mathbf{q}}^{T}\mathbf{H}(\mathbf{q})\dot{\mathbf{q}}\right)\right)^{T} + \mathbf{g}(\mathbf{q}) = \boldsymbol{\tau}$$

$$\underbrace{=\mathbf{c}(\mathbf{q},\dot{\mathbf{q}})}_{:=\mathbf{c}(\mathbf{q},\dot{\mathbf{q}})}$$

• Could be either hard constraints or regularizations

References in Topic I: Dynamics-Level Residual Learning

- Zeng, A., Song, S., Lee, J., Rodriguez, A., & Funkhouser, T. (2020). Tossingbot: Learning to throw arbitrary objects with residual physics. *IEEE Transactions on Robotics*
- G. Shi*, X. Shi*, M. O'Connell*, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue, S.-J. Chung, "Neural Lander: Stable Drone Landing Control Using Learned Dynamics", *ICRA 2019*
- G. Shi, W. Hoenig, Y. Yue, S.-J. Chung, "Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions", *ICRA 2020*
- G. Shi, W. Hoenig, X. Shi, Y. Yue, S.-J. Chung, "Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms Using Learned Interactions", accepted by *T-RO*, 2021
- M. O'Connell^{*}, G. Shi, X. Shi, S.-J. Chung, "Meta-Learning-Based Robust Adaptive Flight Control Under Uncertain Wind Conditions", *arXiv preprint*
- A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, Y. Yue, "Robust Regression for Safe Exploration in Control", *L4DC* 2020
- Y. K. Nakka, A. Liu, G. Shi, A. Anandkumar, Y. Yue, S.-J. Chung, "Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems", *RA-L 2020*
- P. Bartlett, D. Foster, D. Telgarsky, "Spectrally-normalized Margin Bounds for Neural Networks", NeurIPS 2017
- M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos, R. Salakhutdinov, A. J. Smola, "Deep Sets", NeurIPS 2017
- C. Finn, P. Abbeel, S. Levine, "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks", *ICML 2017*
- H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein, "Visualizing the Loss Landscape of Neural Nets", *NeurIPS 2018*

Topic II: Action-level Residual Learning

- Two popular pipelines: 1) superposition and 2) filtering
- Some materials from http://www.yisongyue.com/talks/safety_critical_learning.pdf

Example 1: Deep RL + Hand-engineered Controller

• In the training process, π_H is "encoded" in the dynamics

Residual Reinforcement Learning for Robot Control

Tobias Johannink^{*1,3}, Shikhar Bahl^{*2}, Ashvin Nair^{*2}, Jianlan Luo^{1,2}, Avinash Kumar¹, Matthias Loskyll¹, Juan Aparicio Ojea¹, Eugen Solowjow¹, Sergey Levine²

Algorithm 1 Residual reinforcement learning

Require: policy π_{θ} , hand-engineered controller $\pi_{\rm H}$.

- 1: for n = 0, ..., N 1 episodes do
- 2: Initialize random process \mathcal{N} for exploration
- 3: Sample initial state $s_0 \sim E$.
- 4: for t = 0, ..., H 1 steps do hand-engineered controller
- 5: Get policy action $u_t = \pi_{\theta}(s_t) + \mathcal{N}_t$.
- 6: Get action to execute $u'_t = u_t + \pi_{\rm H}(s_t)$.
- 7: Get next state $s_{t+1} \sim p(\cdot \mid s_t, u'_t)$.
- 8: Store (s_t, u_t, s_{t+1}) into replay buffer \mathcal{R} .
- 9: Sample set of transitions $(s, u, s') \sim \mathcal{R}$.
- 10: Optimize θ using RL with sampled transitions.
- 11: **end for**
- 12: end for

Example 2: Smooth Imitation Learning

Example 3: Control Regularization Reduces Variance in RL

Control Regularization for Reduced Variance Reinforcement Learning

Richard Cheng¹ Abhinav Verma² Gábor Orosz³ Swarat Chaudhuri² Yisong Yue¹ Joel W. Burdick¹

• Theorem (informal):

• Variance of policy gradient decreases by factor of: $\left(\frac{1}{1+\lambda}\right)$

$$\left(\frac{1}{1+\lambda}\right)^2$$

Implies much faster learning!

• Bias converges to:
$$\left(\frac{\lambda}{1+\lambda}\right) D_{TV}(h^*,g)$$

 $u_k(s) = \frac{1}{1+\lambda} u_{\theta_k}(s) + \frac{\lambda}{1+\lambda} u_{prior}(s)$

Example 4: Model-based Controller as a "Filter"

 $(a_t,$

End-to-End Safe Reinforcement Learning through Barrier Functions for Safety-Critical Continuous Control Tasks

Richard Cheng,¹ **Gábor Orosz**,² **Richard M. Murray**,¹ **Joel W. Burdick**¹ ¹California Institute of Technology, ²University of Michigan, Ann Arbor

$$\begin{aligned} \epsilon) &= \underset{a_t,\epsilon}{\operatorname{argmin}} \|a_t\|_2 + K_{\epsilon}\epsilon \\ \text{s.t. } p^T f(s_t) + p^T g(s_t) \Big(u_{\theta_k}^{RL}(s_t) + a_t \Big) + p^T \mu_d(s_t) & \mathsf{CBF} \\ &- k_{\delta} |p|^T \sigma_d(s_t) + q \geq (1 - \eta) h(s_t) - \epsilon & \mathsf{safety} \\ a_{low}^i &\leq a_t^i + u_{\theta_k}^{RL(i)}(s_t) \leq a_{high}^i \text{ for } i = 1, ..., M & \mathsf{constraints} \end{aligned}$$

Topic III: Program-level Residual Learning

- The "program" design is on a case-by-case basis
- Algorithm design and analysis are not as clear as the dynamicslevel and action-level residual learning
- A (very) general framework:

Example 1: DNN to "Adapt" the Reference Signal

Design of Deep Neural Networks as Add-on Blocks for Improving Impromptu Trajectory Tracking

Siqi Zhou, Mohamed K. Helwa, and Angela P. Schoellig

Example 2: Learning Control Lyapunov Function Residual

A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability

Andrew J. Taylor¹, Victor D. Dorobantu¹, Meera Krishnamoorthy, Hoang M. Le, Yisong Yue, and Aaron D. Ames

• In control we only need to make sure

 $\mathcal{U}(\mathbf{x}) = \{\mathbf{u} \in \mathcal{U} : \hat{\dot{V}}(\mathbf{x}, \mathbf{u}) \leq -lpha(\|\mathbf{x}\|)\},$

Example 3: Differentiable MPC

Summary

- Topic I: dynamics-level residual learning
- Topic II: action-level residual learning
- Topic III: program-level residual learning Some directions:
- Trade-offs (e.g., sampling complexity)?
- Combine control and learning theory (e.g., generalization)

"1+1>2"

app

roximation error of DNN (
$$\|\hat{\mathbf{f}}_a - \mathbf{f}_a\|$$
)
 $\frac{\epsilon_m}{\lambda - L_a \rho}$