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Motivations: Real-World Decision Making is Hard

 Q:Can we broaden the successful horizon of deep learning?

“I want to use deep learning to optimize the design,
manufacturing and operation of our aircrafts. But |
need some guarantees.” -- Aerospace Director
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Question: How safe do autonomous vehicles need to be?
® As safe as human-driven cars (7 deaths every 109 miles)
¢ As safe as buses and trains (0.1-0.4 deaths every 102 miles)
¢ As safe as airplanes (0.07 deaths every 10° miles)

I. Savage, "Comparing the fatality risks in United States transportation across
43:9-22, 2013

modes and over time .I\:' search ir ‘Y"l"\." nialior f,

“Can we really use ML in safety critical system?”
Richard Murray, IPAM ICLO workshop 2020

___________________________________________________________________



https://youtu.be/Wi8Y---ce28

Where are the Challenges from?

* Uncertainties
 Modelling mismatch, sim2real gap
 Delay, motor failures, saturations, ...

* Limited computational power
 Data collection is also not cheap

* We need some “formal” interpretability
 E.g., stability, safety
* Neural networks are “hard” to control

NN landscape, Li et al., NeurlPS 2018



ldea: Control Theory Meets Machine Learning

* Atypical pipeline in control

System Dynamical Control
|dentification System Synthesis

Formal guarantees
System Id is often expensive, inaccurate and hard to generalize
Control synthesis might be too complex or conservative

* Atypical pipeline in learning

[Data O LearnmgH Policies

Flexible, generalizable, transferable, ...
No “formal” interpretability
DL is data hungry

wind tunnel test




This Lecture

Physics

[Data (J Learning

 Topic |: dynamics-level residual learning
* Topic ll: action-level residual learning
* Topic lll: program-level residual learning

y .
_[ “Mixed” Policies ]—/ ||:>New Capability!

* Not formal classifications. The boundaries are NOT clear!



Many People Work on this Topic!

Control Meets Learning

Learning for Dynamics and Control (L4DC)

LW May, 30 & 31, 2019 at the Ray and Maria Stata Center
Massachusetts Institute of Technology, Cambridge, MA

Virtual Seminar Series on the Intersection of

Control Control and Learning

Learning Edit profile

Control Meets Learning Virtual Seminars
@ControlMeetsML

LEARNING FOR DYNAMICS & CONTROL (L4DC)

Online June 11-12th, 2020

3'd. Annual Learning for =

Virtual seminar series broadly focused on the intersection of control and learning.
Organized by @NavidAzizan, @guannanqu, @GuanyaShi, and @YuanyuanShi2.

m————
Control Meets Learning seminar series S - 5 202U zRneh- R on i

Dynamics & ControkConference

L4DC conference

Advanced Topics in Machine Learning

, Control Learning
CS 159 - Caltech - Spring 2021

Workshop on Learning for Control

57th IEEE Conference on Decision and Control
Miami Beach, Florida, December 16, 2018

ESE 680, Fall 2019 — Learning and Control  workshops at CDC, NeurlPS, ICML, ICRA, RSS...

AA 203: Optimal and Learning-Based Control

Spring 2021

courses: Caltech CS159, Stanford AA 203, UPenn ESE 680, ...



Topic |I: Dynamics-level Residual Learning

x=f(x,u)+

f(x,u)
Physics

unknown

[Data ( Learning

* Key features we pursue:

Mixed & Modularized Control Synthesis
Dynamical Systems Motion Planning %,

4 Generalizability Guarantees

Compact & Efficient )
Representation

>

New Capability!
u1+1>2u



Neural-Lander Family

s

(Neural-Lander) learn g using normalized DNNs

(Neural-Swarm) learn g in heterogeneous swarms

(Neural-Fly) meta-learn g and online fast adapt
__ (Safe Exploration) safe learn g without experts

x=f(Q,u) Hglxu,t)—

unknown

— p=1.0
61 — p=0.0
nominal

2 10.0
Minimum' Vertical Distance: 24cm - >§ z: | 5% 4:5-\7\
Neural-Lander Neural-Swarm and N-Swarm?2 Neural-Fly, ongoing work Safe Exploration
Shi & Shi & O’Connell et al., ICRA 2019  Shi et al., ICRA 2020 and T-RO O’Connell & Shi et al., arXiv preprint Liu et al., L4DC 2020

Nakka et al., RA-L 2020



Neural-Lander - | |
(Neural-Lander) learn g using normalized DNNs

x=f(x,u)+\glx u,t)—

unknown

ground effect

Shi & Shi & O’Connell et al., ICRA 2019



Quadrotor Dynamics

x=flou)+ g0 u)

* X = [p,v, R’ w],u — [n%;n%;ng)nZ]

* Dynamics { P=V, mVng+Rfu+
R = RS(w), JCZJ:Jwa+7-u_|_

(" 1, = [O,O,T]T
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Tu = [7_337 Tya Tz]
< - 2-

¥ cw cT cT cT %

T — 0 cTlarm 0 Gl i n5

Ty o _CTlarm 0 CTla,rm 0 ng

Tz —CQ CQ —CQ CQ 5

- Thq - much harder to

: _ _ |
* f(x,u) is the nominal dynamics model!

* g(x,u) is the residual dynamics (e.g., modelling mismatch, ground effect)



Controller Design (Sketch)

u = m(x,x%, )

* Challenge I: sample efficiency
* Learning f(x,u) + needs 1 hour flight data
* Learning the residual only needs ~5 mins

* Challenge Il: control allocation
* Non-affine control synthesis problem (f,, explicitly depends on u )

* Challenge lll: stability & robustness in control / generalization in learning



Spectral Normalization and Stability Guarantees

* Keyidea: use us_q in the RHS:

up = (X, X¢ )

* If the Lipschitz constant of the DNN f, is upper bounded by y, we have

* Thus, we trained the £, model using Spectral Normalization (SN)
 *SN of DNNs also leads to good generalization (stability in a learning-theoretic
sense) [Bartlett & Foster & Telgarsky, NeurlPS 2017]



Training Result Visualization

* Training data: manually fly the drone for 5 minutes

—— ReLU Network prediction
—— Ground effect physical model with different u
e Ground truth

0.2

0.4 0.6 0.8 1.0 1.2 1.4
Z (m)

compare with an existing ground effect model

w/ SN w/o SN
(©) 1.4 1.4
e 1.2 mipg set
1.0 1.0 ain
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vz (m/s) v, (m/s)

2D heatmap of the learned f,

*Spectrally normalized DNNs can

wl2.0
-1.5
-1.0 g
"
0.5 <«°
0.0
-0.5

guarantee generalization (Bartlett et al.,
NeurlPS 2020; Liu & Shi et al., L4DC 2020)



Trajectory Tracking Performance

- Neural-Lander performance

0.75

Baseline performance
k spu—__.3%
x_des
y
- y_des
—_——Z
O - d
Baseline:(1.5X%) | e
time/s

“table effect”: need to recollect data and
retrain f,




Neural-Lander Takeaways

stability guarantee

Physics /
_[Mixed & Modularized
Dynamical System
fa(x, u)
— spectral normalization

H t = T[(xt' (xt»ut1))J_’ LELL =

/

only 5min data

/Generalizability

0.2 i
1

-] 0
v, (m/s)

Guarantees

Smooth, Safe,
Fast Landing

>

Shi & Shi & O’Connell et al., ICRA 2019



Neural-Swarm -

(Neural-Swarm) learn g in heterogeneous swarms

x=f(x,u)+\glx u,t)—

unknown

2.5x speed

Shi et al., ICRA 2020; Shi et al., accepted by IEEE T-RO



Motivations

Crazyflie 2.X (34 g) g Y

|

|

|

|

|

~9 g thrust loss I 0.5m i
| e |nteraction matters

i * Prior works require ~60cm safe
vertical distance

(downwash) \ ’T%\:{

* How can we model the interaction in:
e two and more drones?
* heterogeneous teams?




Models and Challenges

Small Robot ~

1

Ground Effect

14 small robots and 2 large robots

nominal dynamics of type I(i)

0
f;m( W (”))+ R

f(Z) fI(Z (Mype 1) °°
D =7TOWD 1 Nede k)

Né” )

ype— K

* Heterogeneity
e Generalization in the number of robots

 What if we only have data from 1-3
robots?

* Limited computation power

* Requires decentralization



Heterogeneous Permuta‘uon Invanance

,. ____________________

_______________________

* Heterogeneous permutation-invariant function: h(x,y) = max{2xy, 2x,} + max{yy, y,}
 We generalize the “Deep Sets” architecture:

Theorem (Shi et al., accepted by T-RO; generalized Zaheer et al., NeurlPS 2017)
Any continuous, heterogeneous permutation-invariant function [f; 7| can
be approximated by superposition in the latent space
type—1> e— K ~
o) | ) | 2 > -
type—1> type K X(”)EN(” .
type—
Interaction force on type (i) decode for type I(i) encode type I(j) nelghbors

* We only need 2K neural networks for K types



Use-Case |I: Control

{small, small, small
Swapping (Neural-Swarm)

{small, small, small
Swapping (Baseline)

~ Neural-Swarm ‘ +—

e Baseline (BL) is a SOTA nonlinear controller with delay compensation



Generalization

 We only collected 1-3 robots’ data in training
 Can it generalize?

1.01 —— NN 2.5x speed
EO.B - == Desired
c — BL
20.6 \
(]
b
0.4
O.
o
¥ =101{[— Computed
-~ NN prediction
2 4 6 8 10 _
Time [s] b k k I ”
: 16-robot 3-ring tracking task (2 larges, 14 smalls
5-robot swapping task (2 larges, 3 smalls) g 8 ( 8€s, )

* 24cm minimum vertical distance
* Prior works: *60cm in a homogeneous team



Use-Case Il: Interaction-Aware Motion Planning

* Integrate learned interactions with a two-stage planner
e Stage |: AO-RRT type sampling-based planning with learned interactions
e Stage Il: Optimal-control-based planning using Sequential Convex Programming (SCP)

7S 10
Initial trajectory\of neighbor ----= Rejected motions

N

t
8 min 3 [ o) ©
0

Search tree Solution

. (robot dynamics (4) i € [1,N]

u® (t) € UTD; xO(8) € XTO  je [1,N]
= st. 4 ||plid)|| > rEOIG) i <3, j€l2,N]

€271l < faime; 17a” || < 7asmax] i € [L,N]

’ \x(’) (0) = x5”; x@ (ty) = xSf) i € [1,N]

0 Stage Il: optimal control
* Nonconvex so we use SCP
* We can explicitly control the interaction magnitude!

Stage I: AO-RRT type planning
* Fix the blue robot and plan for the



Use-Case Il: Interaction-Aware Motion Planning

Planning with NN (Stage 1)

0.0 0.5 1.0 125 2.0 2.5 3.0
time [s]

Planning with NN (Tracking) Planning without NN (Tracking)

falg)
]
!
HJ
g
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1
1
gl
I
11
1
<

] == ey =

. : . : = . 2 ;
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5
time [s] time [s]

The large robot is at the bottom The large robot is at the top;
constraint violations

= === el =
2

T T L]
0 2.5 3.0




Neural-Swarm Takeaways

Mixed & Modularized Decentralized Control
Swarm 2-stage Planning

Physics

&

. Caltech

/Generalizability Compact & Efficient )
Representation
1-3 robots > Safe Close-
1 P () Z Y b x) Proximity Flight
5-16 robots kG en®

L L /

Shi et al., ICRA 2020; Shi et al., accepted by IEEE T-RO



Neural-Fly (Ongoing Work)

x=f(,u)+glxu,t)

unknown

(Neural-Fly) meta-learn g and online fast adapt

with wind =

O’Connell & Shi et al., ongoing work, preliminary version at arXiv



Meta-Learning Meets Adaptive Control

* The unknown residual term is governed by the environment ¢(1):

x=fu)+gx c(t))

* Example: drone flying in different winds

1.50 0 m/s 0.8 4 0m/s

1.3 m/s
2.5 m/s 0.6 -
3.7m/s
49 m/s

0m/s
1.25 1.3 m/s 1.54
25m/s
1.00 1 3.7 m/s

0.75 1

1.04
0.4 4

0.50 1
0.5 1 0.2 -

0.25 A

T T 0-0 T Ll
2 4 -4 -2 0 2 4 6

| p fa,y%g) fa,z (g)
Caltech CAST fan wall histogram of g with different ¢

0.00- 0.0

2 -4 -2

* Key idea:

g(x' C) ~ Eb(x; H)a(c) 1 a latent state to be online adapted

. using adaptive control theor
representations to be meta-learned ( 8 P V)



Meta-Learning Meets Adaptive Control

* With the meta-learned representation ¢(x; 0 ), adaptive control comes into play

a;.q1 = adapt(a;, &, x¢, ...)

* Control stability and robustness can be guaranteed

»

\ p =
Without any online adaptation, the drone
does not compensate for the wind



Safe Exploration -

x=f(x,u)+\glx u,t)—

unknown

1 €D Landing trajectories Animation
' ' time: 0.01 s
1.25-
'€ 1.00- —
< 0.751

—— slow landing (safe)
'g 0.50 —— fast landing (safe)
. —— fast landing (unsafe)

Py
0.25 \\l \

0.00

Liu et al., L4DC 2020, Nakka et al., RA-L 2020

2.00

1.75 -
1.50 -
g 1.25 -
€ 1.001
g 0.75 -
0.50 -
0.25 -

0.00

Landing trajectory

2.00
1.75
1.50
.25
1.00
.75
0.50
0:25
0.00

__ (Safe Exploration) safe learning g without experts

Phase plane

=2 2
Velocity (m/s)




Motivations and Challenges

* How to collect data without experts?
* Exploration v.s. exploitation: how to quantify uncertainty under domain shift?

covariate shift: P(y|x) is fixed, but P, (x) # P (x)

©) 1.4
B ing trajectori Trajectories in the ph |
- anding ajec ories 1 sorrajectories in the phase plane 1.2
1.254 1.251
~ Lo Psrc (x )
€ 1.00+ 1.00 1 s
= € 0.8
g0'75' —— slow landing (safe) 0.751 ‘I\'l’
20,501 —— fast landing (safe) 0.50 4 0.6
—— fast landing (unsafe) P
0.25- \ 0.25- 0.4 (x)
0.00 T T T 0.00 T T T 1 trg
0 2 4 6 8 -2.0 =15 -1.0 -0.5 0.0 0.2 1
time (s) velocity (m/s) -
0-0 T ; T 1
-2 -1 0 1

v, (m/s)

* Key idea: using robust regression to quantify uncertainty under covariate shift

Liu et al., L4DC 2020, Nakka et al., RA-L 2020



Results

* Deterministic safety constraints and planning in a trajectory pool [Liu et al., L4DC 2020]

iteration 1 iteration 4
5 v
144 —— DesiredC =1.0 | 144{ —— Desired C =2.0
---- Worst Case ' ---- Worst Case
124 —— Ground Truthd ! 124{ —— Ground Truth d
—— Roll-Out H —— Roll-Out
. 101 t 1.0 \
£ ': \
42 087 H 0.8 A
5 \ \
D 06 ! 06 \
== ‘.‘ \
04 ‘\ 0.4 “\
landing time: inf s landing time: 1.84 s\
02
unsafe region
00 0.0 ‘
-30 =-25 =20 -15 -10 -05 0 -30 -25 -2.0 -1.5

Velocity (m/s)

-1.0
Velocity (m/s)

-0.5

Landing Time Comparison

w
v

iteration 10
— 2.00 7
141 —— Desired C =2.5
--=- Worst Case 173 ol
124 —— Ground Truth d s
~—— Roll-Out ' -
10 2
1.25 g
081 1.00 = 4
g
0.8 0.75 =
b § 3
0.4 . : ; 0.50
landing time: 1.3 5
0.2 , N 0.25 :
unsafe region .
0.0 - v v N v 0.00 1
0 -30 =25 =20 -15 =10 =05 0.0 2

Velocity (m/s)

e

- Robust Regression
~+ GP-RBF

viveees| === GP-Matern (1.5)
GP-Matern (2.5)

..................

T e e

4 ] ! 8 9 w

¢
Iterations

* Information-cost stochastic optimal control with chance-constraints [Nakka et al., RA-L 2020]

— p=1.0
6 — p=0.0
nominal

4.25 -

4.00 -

Variance

375

Terminal Position

Differential
Entropy (nats)

Epoch

o-\/\_\\\
5= oy
0 - — 0 =0.0
5~\\\\\_\’§§_~
0 10
Epoch

Collisions Without
Safety Filter

\\\
600 {—"==%===:
— 0 =10
400 A — 0 =00
- = nominal
200
04 :
0 10

Epoch



Recap for Topic |: Dynamics-Level Residual Learning

Physics

[Data O Learning

* Key features we pursue:

Mixed & Modularized Control Synthesis
Dynamical Systems Motion Planning

/Generallzablllty Guarantees Compact & Efficient )

no wind g-; ,

Representation
: New Capability
in Robotics!




Some Other “Control-semantic” Regularization

* Learning stabilizable dynamics

Learning Stabilizable Nonlinear Dynamics

2
£112
: : C min
with Contraction-Based Regularization fen § : ) + NHf H?—L

Flas,ug) — i

Sumeet Singh!, Spencer M. Richards!, Vikas Sindhwani?, Jean-Jacques E. Slotine®, and e .y
Mareo Pavonel S.t. f 1S Stablllzable,

* Learning Lagrangian systems

DEEP LAGRANGIAN NETWORKS: (5 T
Using PaYsics As MobpEL Prior FOR DEep LEARNING  H(@)4+H(q)q - 7 (@ (qTH(Q)Q)) +g(q)=1

N -
-

Michael Lutter. Christian Ritter & Tan Peters * =c(q,q)

 Could be either hard constraints or regularizations



References in Topic |I: Dynamics-Level Residual Learning
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Topic Il: Action-level Residual Learning

 Two popular pipelines: 1) superposition and 2) filtering
e Some materials from http://www.yisongyue.com/talks/safety critical learning.pdf

( Model-based U
L Controller n\
[Data () Learning]— U,

[Data () Learning}— U, —»[Model—based Filter



http://www.yisongyue.com/talks/safety_critical_learning.pdf

Example 1: Deep RL + Hand-engineered Controller

* |nthe training process, 7 is Residual Reinforcement Learning for Robot Control
“encoded” in the dynamics

Tobias Johannink*!:3, Shikhar Bahl*?, Ashvin Nair*?, Jianlan Luo':?, Avinash Kumar',
Matthias Loskyll!, Juan Aparicio Ojea', Eugen Solowjow!, Sergey Levine?

Algorithm 1 Residual reinforcement learning

Require: policy 7y, hand-engineered controller 7.
1: for n =0,..., N — 1 episodes do
2:  Initialize random process N for exploration
Sample initial state sy ~ E.
for t=0,..,H —1steps do hgnd-engineered controller
Get policy action u; = mg(s¢) + Nj.
Get action to execute u; = u; + my(s¢)-
Get next state s;1 ~ p(- | 8¢, u}).
Store (s¢,us, S¢+1) into replay buffer R.
Sample set of transitions (s,u,s’) ~ R.
10: Optimize # using RL with sampled transitions.
11:  end for
12: end for

" . Real-World Learning Curves
‘ 2

ww— Residual RL
= QOnly RL

0.0 N




Example 2: Smooth Imitation Learning

Smooth Imitation Learning for Online Sequence Prediction

Hoang M. Le HMLE @CALTECH.EDU
Andrew Kang AKANG@CALTECH.EDU
Yisong Yue YYUE@CALTECH.EDU

California Institute of Technology, Pasadena, CA, USA

Peter Carr PETER.CARR @ DISNEYRESEARCH.COM
Disney Research, Pittsburgh, PA, USA

Black Box Predictor Smooth Model

argming—sgL(h) s.t.  h(s) = argming (f(s) —a")? + A(g(s) — a')?

_ f(s)+Ag(s) _40

1+

(a) SIMILE Test Set 1

(b) Supervised Test Set 1

VI |

(c) SIMILE Test Set 2

(d) Supervised Test Set 2



Example 3: Control Regularization Reduces Variance in RL

Control Regularization for Reduced Variance Reinforcement Learning

Richard Cheng' Abhinav Verma? Gabor Orosz® Swarat Chaudhuri? Yisong Yue'! Joel W. Burdick

* Theorem (informal):

. . . 1 \2
1 A * Variance of policy gradient decreases by factor of: (1_+,1)

uE(s) = Ug, (8) + ——Uprior(S : ;
(5) 1+ A "”’( ) 14+ A pmor( ) ) Implies much faster learning!
* Bias converges to: (m) Dry(h*, 9)
Zoom Out (With Var)
High Regularization Low Regularization 2000 Ll el
— Control Prior Traj. — Control Prior Traj. 0 Cf Uy 1h _ ppui g
— Optimal Trajectory — Optimal Trajectory .% '
--- Explorable Set S, . 7~ Explorable Set S, M -2000 ' v |
bl o ¥ | f
@ -4000 1i) b, 1"‘ h’ Y
> | W[—ddpg (1 =0)
2 6000 —>x=5
A=15
80007 | [ = adaptive]j
0 1000 2000
State Space, S State Space, S Baseline RL Method / Episod
has High Variance! PROGE




Example 4: Model-based Controller as a “Filter”

(at, 6) = argrmn ||at||2 + Kce

End-to-End Safe Reinforcement Learning through at,e
Barrier Functions for Safety-Critical Continuous Control Tasks st. pT F(se) + pTa(s0) (u BE(s,) + at) o CBE

T
Richard Cheng,' G4bor Orosz,” Richard M. Murray,' Joel W. Burdick! — kslp|” oa(st) +q = (1 —n)h(st) — € safety
l . . . 2 . . . . 3 ) = ) .
California Institute of Technology, “University of Michigan, Ann Arbor a’;ow <ait ug‘iL(z) (St) < a;n'gh fori=1,..,M constraints

4 Safety Violation
- Plant = Model-free s
@ P T
Se+1 = f(se) + g(sp)a, RL controller < e
IS 2 | |- —-trpo-cbf
uCBF ik uRL 5\_ trpo
k O RL > - - -Safe Boundary
Ug @ 1 e e -
! k E ,.‘ A J'.:.._"'“- ‘._’,_‘,,,\':v AR C R T, TCE SRR RO
o= CBF controller
- 0
0 100 200 300 400
Episode
l-[ Reward vs. Episode
® Ttopt 9 0+ == - T ——
T _ W
Set of 7Tl§+1 S 200
Safe Policies T _400|
5 T[g,fﬂ E 400 ggpg{bf
1 Pg
N\' ~ " 8 -600 | - —-tmo-cbf
\ ] trpo
! RL w .g800+
\ n'e /’
\ k
b o -1000 ! : : : :
0 100 200 300 400

Episode



Topic lll: Program-level Residual Learning

* The “program” design is on a case-by-case basis

* Algorithm design and analysis are not as clear as the dynamics-
level and action-level residual learning

A (very) general framework:

4 D
, Some Program for Control
[ (Partially) Unknown Systems I

X=ew Data () Learning
g J




Example 1: DNN to “Adapt” the Reference Signal

Design of Deep Neural Networks as Add-on Blocks for Improving
Impromptu Trajectory Tracking

Siqi Zhou, Mohamed K. Helwa, and Angela P. Schoellig

Selected Baseline Feedback Control System
Desired Output Reference ] Disturbance  Acpyq
{) .
va(t + Ay), DNN e Baseline IR N
ya(t + Az), Module ; - Controller > (@)
: Y 1 :
, !
ya(t +AL) : ! :
! I i
: ! z(t) or y(t) depending on : :
. ] | f o I ¢! o
Testing Phase .. _____ e PSS P e mennen !
\ 4 : ¥
Storage - » Storage
1
: e X iyt +Ay),
: [ i I y(t+ Ag),
oy e — ’b" e M d | .......... I :
g oelie y(t+Ar)

Training Phase (Offline)

Path in x-z plane
Baseline=—— DNN (12 Inputs) —— DNN (36 Inputs)

x (m)




Example 2: Learning Control Lyapunov Function Residual

A Control Lyapunov Perspective on Episodic Learning
via Projection to State Stability

Andrew J. Taylor!, Victor D. Dorobantu', Meera Krishnamoorthy,
Hoang M. Le, Yisong Yue, and Aaron D. Ames

* In control we only need to make sure  U(x) = {uc U : V(x,u) < —a(|x|)},

d
% = £(x) + g(x)u + (g(x) - g(0)u + £(x) — £(x), (23)
A(x) b(x)

V(x,u)
V(x,u,d) = (f(x) + g(x)u) ' VV(x)
+(A(x) ' VV(x) 'u+b(x) VV(x), (24)

a(x) b()




Example 3: Differentiable MPC

Differentiable MPC for End-to-end Planning and Control

Brandon Amos! Ivan Dario Jimenez Rodriguez? Jacob Sacks?
Byron Boots? J. Zico Kolter'3
LCarnegie Mellon University 2Georgia Tech 3Bosch Center for Al

Backprop

States I:> Policy E> Actions |:> L oss

:> Learnable MPC Module :>

Submodules: Cost and Dynamics

iy =argmin Y Cy(r) subject to @1 = Tinit, Te11 = fo(re), u <u < T,
T1:T
T



Summary

Physics

[Data () Learning

 Topic |: dynamics-level residual learning

* Topic ll: action-level residual learning

* Topic lll: program-level residual learning

Some directions:

* Trade-offs (e.g., sampling complexity)?

* Combine control and learning theory (e.g., €
generalization) A — Lup

L.
—[ “Mixed” Policies ]—/ ||:>New Capability!




