
Jeremy Bernstein 
bernstein@caltech.edu



Six lectures, covering:

1. Tools for understanding neural nets
2. Application: optimisation
3. Application: generalisation

Plus two homeworks.



1. Class philosophy
2. Neural network basics
3. Motivating questions
4. Architecture design
5. Perturbation theory





Some reasons people do machine learning
theory:

They like math (aesthetes).
"You couldn't possibly use an algorithm
without a theoretical guarantee!"



In this class, the main motivation will be:

Build a better understanding of what works,
so as to both improve and build upon it.

-1
e.g .

combine w/ control



1. Empirical exploration
2. Modelling
3. Derivation
4. Empirical validation
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- all models are wrong
. . .
Some are useful
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directed acyclic graph
composed of neurons

General question : how do local properties of neurons
translate to global properties of the network ?



Wish to train network to fit some targets .
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construct loss function Hw) = III (ft"; w) - ye")
"

Rux gradient descent :
W→ W - qTwL(w )

q is the
"

learning rate
"

- how small should it be ?



Consider two fully-connected layers:
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The relevant gradients are given by:
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② the neuron uses this gradient to update its fan
- in weights .





How do we design principled training
algorithms for neural nets?
How do we move beyond classic
optimisation theory?J

unai

/
e.g convex opt .

y , preetiones
tune not only the

optimise hyperparameters,
but also the optimism
itself (e.g . Adam vs SGP)



Why do neural nets generalise when

#parameters ≫ #data?

Why do neural nets generalise when they
have the capacity to fit any labelling of the
training data?

(
this violates the central premise of
Vapnik - Cher romance is learningtheory .





(MLP )
• layered structure
• each layer is a matrix followed by nonlinearity
• assumes little about the structure

of the input.
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(CNN)
• assumes input is a 2D image
• input has translation invariance

f →
0

a t
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person
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. . . Still
"

person
"

A network layer exploit this structure by convolving
a small filter with the image instead of doing a

^
fun matrix multiply .
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Different architectures account for
data with

different structure . For example :

Structure Architecture
-
-

vector MLP

image CNN

sequence transformer



(NAS )

NAS is a computational approach to discovering
new architectures .

It comes in two main flavours :

① train lots of networks with slightly different
architecture

, e.g . NAS via reinforcement learning

L
- can be viewed as an

"

evolutionary
"

outer loop
"

where network training is the inner loop .

I
③ toy to learn the network weights and

architecture at the same time
, e.g .

"

DARTS
"



Neural Architecture Search
-

① computationally expensive

②
results of search biased by how the search space
is defined - would NAS discover transformers ?

Intuitireapproaeh "
use corns for image data

"

① not explicit about what the role of architecture is

② doesn't answer concrete questions like :

"

using architecture X to learn dataset Y will take Z data points
"



We just looked at a global property of the

architecture - network topology .

For now
,
lets turn to some local properties of

neurons and The nonlinearity .

A good rule -

of
- thumb in architecture design is to

ensure that the activations are all on the same scale .
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we don't want the activity

DBA of neuron A
to dominateo⇐••o⑧ the activity of neuron B•-



Consider a
"

linear neuron
"

(y =

,

wiki) and impose
two constraints on the weights :

( ' I I. wi = O -
"

balanced excitation &
inhibition "

(2) Iwi = I - hyperspherical constraint

Assuming that the inputs ai are uncorrelated random
variables with the same mean aid variance 1

,
then :

Eg = 0 by ( 17 and E = l by (2) .

So the output y
has the same scale as the inputs seen .



Consider the
"

scaled relu
"

nonlinearity 01k¥ x. max(94.
- what's the best x ?

Suppose n nNco, 17 . Then § (n ) is
"

rectified Gaussian
"

with variance ( I -t ) = o - 34I .

For L - I
, the standard relic nonlinearity tends to

"

squash
"

its input by a factor of 0.34 .

-
But by setting L = 1,2¥ we avoid this

,
and

obtain Var Cnl] = Varia] = I .



we care about this

because we train

(Twins:Ei.

General question : for a network output f (n; w) ,
how does If -- f Ini wtAw) - flu; w) depend on
the size

of the perturbation Aw ?



There are a lot
of results about how a matrix A

behaves under perturbation Ana At AA . For example :

①

pertwbationexpansionse.grdi (At AA ) = di la ) t h (AA) t O (AA' )
J ja.

it"eigenvalue some linear function

② perturbation abounds
-

e.g . KANIA He s HAVE + HAAN Frobenius nom

E.
triangle inequality



A neural network is just a product of matrices (and

nonlinearties)
.

Consider a toy example for a network with weight
vector a- e Rd .

"

deep, linear,flu; a ) = a) a scalar network
"

Perturbation result :
-

f-KiatAe ) - flu; q )
d

-
= IT ( it Aaa÷) - I .

Hai E ) i -- I

Will generalize this to
"

deep , linear, matrix network
"

in HW 3
.



• we looked at network topology and said things like
"
CNN, seem to be well - suited to images

"

. We will

return to this issue in lecture 11 when we look

at PAC- Bayesian generalisation theory .

• we looked at properties of neutrons and saw how

they effect the balance of network activity .

• we looted at perturbation theory of compositional
functions . This will help in lecture 9 when we

look at optimisation theory of
neural nets

.



We will develop a major tool of NN theory :

Ee the neutral network - Gaussian process ¥
⇐ ⇐
=

correspondence ¥

This will let us move from parameter space to

function space so that we can study the typical
kinds of function that an NN implements .




