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1. Complexity of a function space
2. Universal function approximators?
3. Studying random functions
4. Neural networks as Gaussian processes



What does an NN's function space look like?
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Theorems like: 

"a wide enough NN can fit any function"

Empirical findings like: 

"my NN can fit any labelling of the train set"

But this does not address what kinds of function
are common- what kind

of function is the
architecture biased toward ?

a.k.a
.
He NN's inductive bias - tie focus of this lecture .
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...so how do we move there?

① Many weight vectors map
to the same function :
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② Simple geometries in function space may be intractably

complicated in weight space :
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key idea : to study what kinds of function an NN
is biased towards

, study the properties of
random functions that the NN implements .



Imagine throwing a dart at weight space . . .
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Jupyter notebook on the course website.

3 layer MLPwww./YiodtipYf0
Repeatedly sample the weights randomly .
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A Gaussian with mean zero is fully specified
by its covariance matrix .

When sampling random networks, this is given by
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• For a wide enough NN.

-
the outputs are jointly Gaussian .
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If for all finite collections of inputs

x , ..., x(1) (n)

the following holds:

f (x ), ..., f (x ) ∼(1) (n) N (μ, Σ)

then we say that  is a Gaussian process.f



To
prove the claim that random, sufficiently

wide NNs behave like GPs
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Let  be i.i.d. random variables each
with mean 0 and finite variance .

Then as ,
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Let  be i.i.d. random vectors each
with mean 0 and finite covariance .

Then as ,
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Let  be a random vector .

What is the distribution of ?

Y Y ∼ N (μ, Σ)

AY
← fixed matrix .

AY is also Gaussian
, by momentgenerating f-us .

To see this
,

• MGF
of Y is : Eet't = e put IEEE
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• We now have everything we need to
prove that

NNS behave like GPs
.

• we'll start simple and build up .
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If the components of w are jointly Gaussian, then
the outputs are given by a linear transformation
of w ⇒ the outputs are jointly Gaussian .



What is the covariance of tie linear neuro- GP ?

Consider two outputs
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provided the two weight vectors w and u are sampled
independently of each other, then two neurons in a
linear layer are just independent linear neurons .

The linear neuron yields a GP ⇒ the linear layer does too .



nonlinearity
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Surprisingly , this does hold in the limit that di
, day . . . , de-z→a .

The proof is by induction , using the MV -CLT .





-layer MLP, hidden layer width 

nonlinearity 

inputs  with 

iid Gaussian weights 
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Interpretation : n is the covariance for a linear neuron

The additional layers modify this covariance via the fu .

h
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We found that for a finite collection of inputs ,
the outputs of a sufficiently wide

NN are

jointly Gaussian iv. rt
.

random sampling of the weights .

The covariance matrix of this Gaussian depends
on how the network architecture transforms the
input correlations .



The first application of our tools ?

- optimisation of neural networks .
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