
Jeremy Bernstein
bernstein@caltech.edu

1. Complexity of a function space
2. Universal function approximators?
3. Studying random functions
4. Neural networks as Gaussian processes

What does an NN's function space look like?
K x

How complex are the functions ?

Regression x
X '

complex
" (here we aremy

,

"

simple
"

x x being vague
about what

x x
"

complex
"

means

xxxx x

classification
"

sigh;Y
- l

x xx x

Theorems like:

"a wide enough NN can fit any function"

Empirical findings like:

"my NN can fit any labelling of the train set"

But this does not address what kinds of function
are common- what kind

of function is the
architecture biased toward ?

a.k.a
.
He NN's inductive bias - tie focus of this lecture .

↦
Assuming n inputs and an NN with a ID output,

f- Imi w)

weighrwnewrtsfgnpenyzfrma.am/fk:!wl,/ElR"
f- Can i w

varying w in weight space also moves the function space rep .

fthiwlweight space
r

,→ ¥,#n, ;w).

.

.

-
'
-
-
'O
wi

.

•
'

w
'
"

'

•

...so how do we move there?

① Many weight vectors map
to the same function :

f-Car;w)

'→ ¥*..
② Simple geometries in function space may be intractably

complicated in weight space :

f-Car;w)

1¥ '→ Hair.

key idea : to study what kinds of function an NN
is biased towards

, study the properties of
random functions that the NN implements .

Imagine throwing a dart at weight space . . .

attain)
inspecting a

ancodrrespondigthfn . £#m;w)t*
. .

- then throw more darts

•
•

Jupyter notebook on the course website.

3 layer MLPwww./YiodtipYf0
Repeatedly sample the weights randomly .

Input 2 Inputs Input 4

Input I

- OutputsBe A W jointly
of Gaussian !
°

out-88K2 outposts 0488514

A Gaussian with mean zero is fully specified
by its covariance matrix .

When sampling random networks, this is given by

II.
ij
:= Ewyptfteiiwlflnjiw))
→ T
-

nggisgwe:face output " "

Pommier .!input;

enough

A

• For
any finite collection of inputs
KI g

ML
y

- - -

y
N
n .

• For weights w
d Gaussian

.

• For a wide enough NN.

-
the outputs are jointly Gaussian .

Iii: Inner.⇒ .

If for all finite collections of inputs

x , ..., x(1) (n)

the following holds:

f (x), ..., f (x) ∼(1) (n) N (μ, Σ)

then we say that is a Gaussian process.f

To
prove the claim that random, sufficiently

wide NNs behave like GPs
,
we will

need some
. . -

I
@

Let be i.i.d. random variables each
with mean 0 and finite variance .

Then as ,

X

 ⋅n X

= X

n

1

i=1

∑
n

i

= X

 n

1

i=1

∑
n

i

X , ...,X 1 n

σ2

n → ∞

central limit theorem

ft

with

→ O probability
one

.

→ Nfo, E) .

Let be i.i.d. random vectors each
with mean 0 and finite covariance .

Then as ,

Y

 ⋅n Y

= Y

n

1

i=1

∑
n

i

= Y

 n

1

i=1

∑
n

i

Y , ..., Y 1 n

Σ

n → ∞

→ I !) Bithyniais

→Me, -4
.

Let be a random vector .

What is the distribution of ?

Y Y ∼ N (μ, Σ)

AY
← fixed matrix .

AY is also Gaussian
, by momentgenerating f-us .

To see this
,

• MGF
of Y is : Eet't = e put IEEE

⇒ MGF of AY is : IE eEAY.EE#MtttFAZATt
⇒ AY -N (Ape , AZAT) (byuj¥¥?" 't?

• We now have everything we need to
prove that

NNS behave like GPs
.

• we'll start simple and build up .

M← Consider n inputs :
ur

•T
n'y . . .

,
In ' E Rd

Rd Ge Wd

Stack the inputs into a
"
data matrix

"

:

x -

- I
Then the n outputs may

be written as Xw
If the components of w are jointly Gaussian, then
the outputs are given by a linear transformation
of w ⇒ the outputs are jointly Gaussian .

What is the covariance of tie linear neuro- GP ?

Consider two outputs
ya ' = It

,

wine" y
'"

-

- Edie
,

win?

Suppose he weighs W
:c µ(o, o') .

The means are E f" - E y
'' '

-
-
O

.

Then the covariance is

Ety
'"

y
'"] - EI wi"gigninja ' .. oidium

•
← weights w

input =•
y ,
- win

n ••#⑧ you're•*

gun u

provided the two weight vectors w and u are sampled
independently of each other, then two neurons in a
linear layer are just independent linear neurons .

The linear neuron yields a GP ⇒ the linear layer does too .

nonlinearity

-
• d

,

¥
o•X• y cul

-

- Zi eui f(wise)•¥I÷÷
.

"

I
an:r÷

.
Second

layer weights
For inputs n

'"

, - . .

,
uh
,
consider vector

[y hit, . . - , yea" I] = Iai fluid "), . . . ,uiY(win"))
If all the weights are drawn iid with finite variance (andof
does not blow up variances) then each summand is an iid

random vector with finite covariance .
So
,
as d ,

-1 A
, I y ,

- -
-

, y he
" I] is Gaussian by the MV -CLT.

d
,
units da units de- i units

a.
•

.→ ••.¥••¥••↳÷⇐•IO

O

h
, Cal halal he

- ily

Again, for inputs a
" '

,
a

'"

,
.
. -

,
n'" I consider vector
L
- I r

e- I

tying . . .

, going] -- Idi lui#hike"'ll , . . . , uiodh.tn"'ll)
E- I

we'd like to take de ,
→ x and apply the MV - CLT as we did

for one hidden layer, but first we need to check that for a

fixed input n, the hidden units h!
- '

(ul
,
hi
- '
Int

, . . . , kid!! .cl are independent.

Surprisingly , this does hold in the limit that di
, day . . . , de-z→a .

The proof is by induction , using the MV -CLT .

-layer MLP, hidden layer width

nonlinearity

inputs with

iid Gaussian weights

L → ∞

ϕ(z) := ⋅2 max(0, z)

x , x , ..., x ∈1 2 n Rd ∥x ∥ =i 2 d

N 0, (fan in
1)

Define htt) : = ⇐ [v '
t t (T - arecost)] .

Then for two inputs e, e
'
f Rd
,

Etftnlffil] = ho . . -

oh (5¥ the compositional
-

arecosine

L- l times kernel
.

Interpretation : n is the covariance for a linear neuron

The additional layers modify this covariance via the fu .

h
.

We found that for a finite collection of inputs ,
the outputs of a sufficiently wide

NN are

jointly Gaussian iv. rt
.

random sampling of the weights .

The covariance matrix of this Gaussian depends
on how the network architecture transforms the
input correlations .

The first application of our tools ?

- optimisation of neural networks .

-

