CS 159 · Neural Network Theory · Lecture 9

Network Optimisation

Jeremy Bernstein <u>bernstein@caltech.edu</u>

Agenda for today

, what is the Adam optimiser?

1. State of deep learning

- 2. Optimisation theory -
- 3. Perturbation theory approach

— an optimisation model based on the neural network structure. (my research, so be critical!)

The stages of theory

1. Empirical exploration well in deep learning 2. Modelling

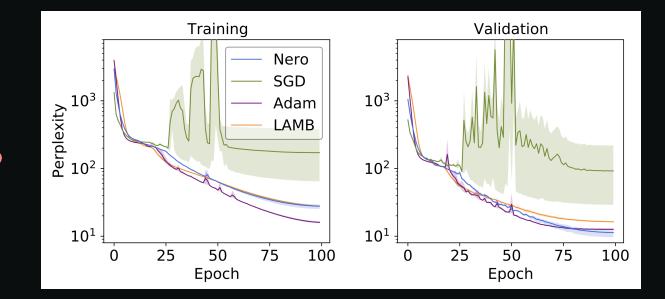
3. Derivation

4. Empirical validation

Stochastic gradient descent

This is where many treatments of deep learning begin.
(05,1 junction
$$d(w) = \sum_{i=1}^{n} l_i(w)$$
, low on datapoint is
full gradient $\nabla_w d(w) = \sum_{i=1}^{n} \nabla_w l_i(w) = : g$ (shorthand)
Stochastic gradient $\sum_{i=1}^{n} \nabla_w l_i(w) = : \widetilde{g}$ (shorthand)
if B
readom "min: batch" of datapoints
Stochastic gradient descent perturbs parameters via
 $W \longrightarrow W = 2\widetilde{g}$
where η is the learning rate. It wakes serve, but... 4

... Other optimisers are often substantially better than SGD...



training a transformer network on a machine translation task.

SGD is unstable and Adam works much better.

History of Adam

rom

Hintons O

Coursera

class

Rprop -> RMSprop -> Adam

A Direct Adaptive Method for Faster Backpropagation Learning: The $\underline{\rm RPROP}$ Algorithm

Martin Riedmiller

Heinrich Braun

Neural Networks for Machine Learning

Lecture 6e r<u>msprop</u>: Divide the gradient by a running average of its recent magnitude

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Diederik P. Kingma^{*} University of Amsterdam, OpenAI dpkingma@openai.com **Jimmy Lei Ba* University of Toronto** jimmy@psi.utoronto.ca 1993

2012

2015

Rprop optimiser
Hinton: Rprop is "used for full batch learning"
gradient
descent
$$\Delta W = -9.9$$

 g_{bbad}
 $learning vate$
 $M = -\left[\begin{array}{c} n_1 & sign(g_1) \\ n_2 & sign(g_2) \\ \dots & \dots & \dots \\ n_d & sign(g_d) \end{array} \right]$

Rprop takes the componentaise gradient sign, so it throws away scale information from the gradient. It also has per component learning rates, with a rule for adapting 7 then over time — but that's not important here.

RMSprop optimiser

RMSprop adapts Rprop to work in the minibatch setting. Imagine a case where a neight receives 10 gradients of +0.1 followed by 1 gradient of -1.0. The average gradient is $10\times0.1+1\times(-1)=0$ so we don't want the neight to more, but Rprop would more the neight a lot. RMSprop removes the overall gradient scale while vetaining relative scale impormation between successive stochastic gradients

RMS prop $\Delta W = -\gamma \frac{\tilde{g}}{RMS(\tilde{g})} \begin{pmatrix} all \; operations \\ componentmise \end{pmatrix}$

 $RMS(\tilde{g}) denotes the voot near square gradient over iterations:$ $RMS(\tilde{g}) := \int (1-\beta) \tilde{g}_{t}^{2} + \beta \tilde{g}_{t-1}^{2} + \beta^{2} \tilde{g}_{t-2}^{2} + \dots \int \beta e(0,1) 8$

Adam optimiser

Adam says, why only smooth the divisor with an
exponential moving average?
RMS prop
$$\Delta W = -\Psi \frac{\tilde{g}}{RMS(\tilde{g})}$$
 (all operations
componentwise)
Adam $\Delta W = -\Psi \frac{EMA(\tilde{g})}{RMS(\tilde{g})}$ (all operations
componentwise)
Mere EMA nears exponential moving average':
 $EMA(\tilde{g}) = (1-p) [g_t + \beta g_{t-1} + \beta^2 g_{t-1} + \beta g_{t-1}] \beta \epsilon(0,1)$

Adam also has a trick for "warning up" the maring arrage 9 at the start, but that's not important here.

Optimiser zoo

Hinton in 2012: "we really don't have nice clear cut advice for how to train a newal net..... think how much better neural nets will work once we've got this sorted out."

an (incomplete) List of optimisers O proposed since then.

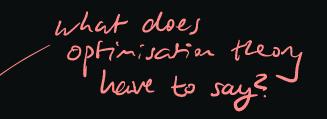
Name	Ref.	Name	R
AcceleGrad	(Levy et al., 2018)	HyperAdam	(Wang et al., 2019
ACClip	(Zhang et al., 2020)	K-BFGS/K-BFGS(L)	(Goldfarb et al., 202
AdaAlter	(Xie et al., 2019)	KFAC	(Martens & Grosse, 201
AdaBatch	(Devarakonda et al., 2017)	KFLR/KFRA	(Botev et al., 201
AdaBayes/AdaBayes-SS	(Aitchison, 2020)	L4Adam/L4Momentum	(Rolínek & Martius, 201
AdaBelief	(Zhuang et al., 2020)	LAMB	(You et al., 202
AdaBlock	(Yun et al., 2019)	LaProp	(Ziyin et al., 202
AdaBound	(Luo et al., 2019)	LARS	(You et al., 201
AdaComp	(Chen et al., 2018)	LookAhead	(Zhang et al., 201
Adadelta	(Zeiler, 2012)	M-SVAG	(Balles & Hennig, 20)
Adafactor	(Shazeer & Stern, 2018)	MAS	(Landro et al., 202
AdaFix	(Bae et al., 2019)	MEKA	(Chen et al., 2020
AdaFom	(Chen et al., 2019a)	MTAdam	(Malkiel & Wolf, 202
AdaFTRL	(Orabona & Pál, 2015)	MVRC-1/MVRC-2	(Chen & Zhou, 202
Adagrad	(Duchi et al., 2011)	Nadam	(Dozat, 20)
ADAHESSIAN	(Yao et al., 2020)	NAMSB/NAMSG	(Chen et al., 2019
Adai	(Xie et al., 2020)	ND-Adam	(Zhang et al., 20)
AdaLoss	(Teixeira et al., 2019)	Nesterov	(Nesterov, 198
Adam	(Kingma & Ba, 2015)	Noisy Adam/Noisy K-FAC	(Zhang et al., 201
Adam+	(Liu et al., 2020b)	NosAdam	(Huang et al., 20)
AdamAL	(Tao et al., 2019)	Novograd	(Ginsburg et al., 20)
AdaMax	(Kingma & Ba, 2015)	Padam	(Chen et al., 202
AdamBS	(Liu et al., 2020c)	PAGE	(Li et al., 2020)
AdamNC	(Reddi et al., 2018)	PAL	(Mutschler & Zell, 202
AdaMod	(Ding et al., 2019)	PolyAdam	(Orvieto et al., 20)
AdamP	(Heo et al., 2020)	Polyak	(Polyak, 196
AdamT	(Zhou et al., 2020)	PowerSGD/PowerSGDM	(Vogels et al., 20
AdamW	(Loshchilov & Hutter, 2019)	ProbLS	(Mahsereci & Hennig, 20)
AdamX	(Tran & Phong, 2019)	PStorm	(Xu, 202
ADAS	(Eliyahu, 2020)	QHAdam/QHM	(Ma & Yarats, 20)
AdaS	(Hosseini & Plataniotis, 2020)	RAdam	(Liu et al., 202
AdaScale	(Johnson et al., 2020)	Ranger	(Wright, 2020
AdaSGD	(Wang & Wiens, 2020)	RangerLars	(Grankin, 202
AdaShift	(Zhou et al., 2019)	RMSProp	(Tieleman & Hinton, 201
AdaSqrt	(Hu et al., 2019)	RMSterov	(Choi et al., 201
Adathm	(Sun et al., 2019)	S-SGD	(Sung et al., 202
AdaX/AdaX-W	(Li et al., 2020a)	SAdam	(Wang et al., 2020
AEGD	(Liu & Tian, 2020)	Sadam/SAMSGrad	(Tong et al., 20
ALI-G	(Berrada et al., 2020)	SALR	(Yue et al., 202
AMSBound	(Luo et al., 2019)	SC-Adagrad/SC-RMSProp	(Mukkamala & Hein, 20)
AMSGrad	(Reddi et al., 2018)	SDProp	(Ida et al., 20
ArmijoLS	(Vaswani et al., 2019)	SGD	(Robbins & Monro, 195
ARSG	(Vaswani et al., 2019) (Chen et al., 2019b)	SGD-BB	(Tan et al., 20)
AvaGrad	(Cnen et al., 20196) (Savarese et al., 2019)	SGD-BB SGD-G2	(Ayadi & Turinici, 20
BAdam	(Salas et al., 2018) (Dei & Zhene, 2010)	SGDM	(Liu & Luo, 202
BGAdam	(Bai & Zhang, 2019)	SGDP	(Heo et al., 202
BRMSProp	(Aitchison, 2020)	SGDR	(Loshchilov & Hutter, 20)
BSGD	(Hu et al., 2020)	SHAdagrad	(Huang et al., 202
C-ADAM	(Tutunov et al., 2020)	Shampoo	(Anil et al., 2020; Gupta et al., 201
CADA	(Chen et al., 2020c)	SignAdam++	(Wang et al., 2019
Cool Momentum	(Borysenko & Byshkin, 2020)	SignSGD	(Bernstein et al., 20)
CProp	(Preechakul & Kijsirikul, 2019)	SKQN/S4QN	(Yang et al., 202
Curveball	(Henriques et al., 2019)	SM3	(Anil et al., 20
Dadam	(Nazari et al., 2019)	SMG	(Tran et al., 202
DeepMemory	(Wright, 2020a)	SNGM	(Zhao et al., 20)
DiffGrad	(Dubey et al., 2020)	SoftAdam	(Fetterman et al., 20
EAdam	(Yuan & Gao, 2020)	SRSGD	(Wang et al., 202
EKFAC	(George et al., 2018)	SWATS	(Keskar & Socher, 20)
Eve	(Hayashi et al., 2018)	SWNTS	(Chen et al., 2019
Expectigrad	(Daley & Amato, 2020)	TAdam	(Ilboudo et al., 202
FRSGD	(Wang & Ye, 2020)	TEKFAC	(Gao et al., 20)
GADAM	(Zhang & Gouza, 2018)	VAdam	(Khan et al., 20)
Gadam	(Granziol et al., 2020)	VR-SGD	(Shang et al., 20
GOLS-I	(Kafka & Wilke, 2019)	vSGD-b/vSGD-g/vSGD-1	(Schaul et al., 20)
Grad-Avg	(Purkayastha & Purkayastha, 2020)	vSGD-6/vSGD-g/vSGD-1 vSGD-fd	(Schaul & LeCun, 20)
Gravilon		WNGrad	
	(Kelterborn et al., 2020) (Rahrami & Zadah 2021)	YellowFin	(Wu et al., 20) (Zhang & Mitliaghes, 20)
Gravity	(Bahrami & Zadeh, 2021)		(Zhang & Mitliagkas, 20
HAdam	(Jiang et al., 2019)	Yogi	(Zaheer et al., 20

Schmidt, Schneider & Hennig 2021

10

Agenda for today

1. State of deep learning

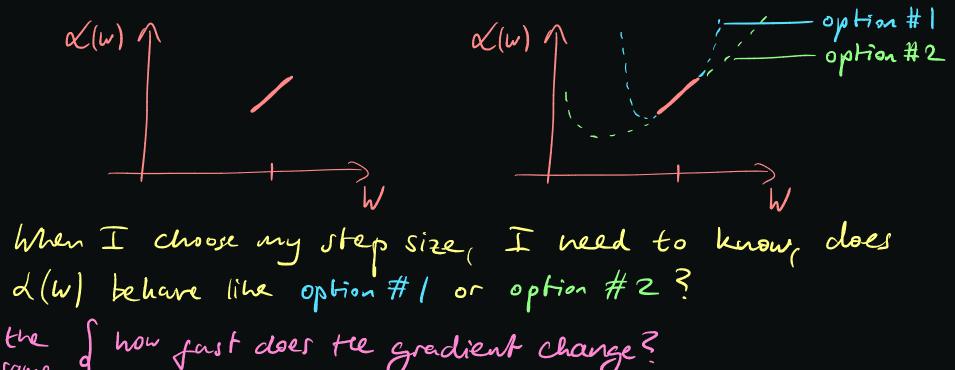


2. Optimisation theory

3. Perturbation theory approach

Models of smoothness

I computed the full batch gradient g:= Vwd(W) of my loss function d(W), and it looks like this:



the flow fast does the gradient change? same of how for can I trust the first order Taylor expansion? 12

Taylor expansions

$$\mathcal{L}(w + \Delta w) = \mathcal{L}(w) + g^{T} \Delta w + \frac{1}{2} \Delta w^{T} \Delta w + \dots$$

$$gradient$$

$$g:= \overline{V}w \mathcal{L}(w)$$

$$Higher order terms$$

$$\frac{1}{2} \Delta w^{T} \Delta w + \dots$$

When picking the step size, we want to know how large we can set DW before the higher order terms start to dominate the first order Taylor expansion. Optimisation theory — let's model the higher order terms 13

Model #1: Lipschitz smoothness

First order Taylor expansion Quadratic penalty $\Delta(W + \Delta W) \leq \Delta(W) + g^{T} \Delta W + \frac{1}{2} \times ||\Delta W||_{F}^{2}$

Lipschitz smoothness models the higher order terms as being banded by a quadratic term in DW. L is a constant which adjusts the strength of the penalty. Let's compute the AW that minimises this model. Differentiating its respect to AW: this is gradient descent with $g + L \Delta W = O$ step size /2 $\Rightarrow \left| \Delta W = -\frac{1}{\zeta \mathcal{J}} \right|^{2}$ - the steeper the penalty, the smaller the stepsize. 14

Lipschitz smooth model: $\chi(W+\Delta W) \leq \chi(W) + q^T \Delta W + \leq \|\Delta W\|_F^2$ Convergence rates: deterministic Our algorithm is condient descent with step size 'C: $W_{k+1} = W_k - Z \mathcal{G}_k \mathcal{G}_k := V_w \mathcal{A}(W_k)$ =) The charge in loss in one step is bounded like: $\mathcal{L}(W_{k+1}) - \mathcal{L}(W_{k}) \leq -\frac{1}{L} \|g\|_{F} + \frac{1}{2} \times \frac{1}{L^{2}} \|g\|_{F} = -\frac{1}{2L} \|g\|_{F}$ Gin words: when the gradient is (arge, the loss will decrease a lot. Now, assuming the loss is nonnegative, the total possible improvement is bounded, meaning the algorithm must find a point with small gradient; $\mathcal{L}(W_{0}) \geq \mathcal{L}(W_{0}) - \mathcal{L}(W_{K}) = \sum_{k=0}^{K-1} \mathcal{L}(W_{k}) - \mathcal{L}(W_{k+1}) \geq \sum_{k=0}^{L} \frac{||g_{k}||_{F}}{||g_{k}||_{F}}$ improvement from improvement from total possible stepk to stepk+1 Step O to step K improvement in words: He average gradient norm over iterations decays ~ 1/K. 15 => Convergence rate $\frac{1}{K}\sum_{k=0}^{K-1} \|g_k\|_F^2 \leq \frac{2L \,\mathcal{L}(W_0)}{K}$

Lipschike swook undel:
$$\sqrt{(W+\Delta W)} \leq \chi(W) + q^{T}\Delta W + \frac{1}{2}\|\Delta W\|_{F}^{2}$$

Convergence rates: stochastic
Now let's consider Stochastic gradient descent
 $W_{k+1} = W_{k} - \frac{1}{2}\tilde{q}_{k}^{T}$
=) The change in (OSI in one step is bounded like:
 $\chi(W_{k+1}) - \chi(W_{k}) \leq -\frac{1}{2}g_{k}^{T}\tilde{q}_{k} + \frac{1}{2}\frac{1}{2}\|\tilde{q}_{k}\|_{F}^{2} = \|g_{k}\|_{F}^{2} + 2g_{k}^{T}(g_{k}-g_{k})\|_{F}^{2}$
=) The change in (OSI in one step is bounded like:
 $\chi(W_{k+1}) - \chi(W_{k}) \leq -\frac{1}{2}g_{k}^{T}\tilde{q}_{k} + \frac{1}{2}\frac{1}{2}\|\tilde{q}_{k}\|_{F}^{2} = \|g_{k}\|_{F}^{2} + 2g_{k}^{T}(g_{k}-g_{k})\|_{F}^{2}$
=) The expected inprovement in one step is bounded like:
 $\#[\chi(W_{k+1}) - \chi(W_{k})] \leq -\frac{1}{2}\|g_{k}\|_{F}^{2} + \frac{1}{2}\left(\|g_{k}\|_{F}^{2} + \frac{1}{2}e^{-2}\right)$
 $\#[\chi(W_{k+1}) - \chi(W_{k})] \leq \frac{1}{2}e\left(-\mathbb{E}\|g_{k}\|_{F}^{2} + \sigma^{2}\right)$
There the total politike inprovement (for a nonnegative loss) satisfies:
 $\chi(W_{0}) \geq \chi(W_{0}) - \mathbb{E}\chi(W_{K}) = \sum_{k=0}^{1} \mathbb{E}[\chi(W_{k}) - \chi(W_{k+1})] \geq \sum_{k=0}^{1} \frac{1}{2}e\left(\mathbb{E}\|g_{k}\|_{F}^{2} - \sigma^{2}\right)$
=) Convergence $\mathbb{E}\left[\frac{1}{K}\sum_{k=0}^{K-1}\|g_{k}\|_{F}^{2}\right] \leq \frac{2L}{K}(W_{0}) + \sigma^{2}$
 $=\sum_{k=0}^{K-1} [g_{k}\|_{F}^{2}] \leq \frac{2L}{K}(W_{0}) + \sigma^{2}$
 $=\sum_{k=0}^{K-1} [g$

Model #2: cubic regularisation

$$\frac{\text{Lipschitz Smoothness model:}}{\text{First order Taylor expansion Quadratic penalty}} \\ \mathcal{L}(W + \Delta W) \leq \mathcal{L}(W) + g^{T} \Delta W + \frac{1}{2} \times //\Delta W / F_{F}^{2}$$

$$\frac{(ubic regularigation model:}{Second order Taylor expansion} \qquad \frac{(ubic penalty}{(W + \Delta W)} \leq \frac{(W) + g^{T} \Delta W + \Delta W^{T} + \Delta W}{G} + \frac{(U)^{T} + 2W}{G} + \frac{1}{G} \frac{\|\Delta W\|_{F}^{T}}{G}$$

PRO: it's a better model of twice differentiable junctions CON: it requires knowing $H_{ij} = \frac{\partial^2 \lambda}{\partial W_i \partial W_j}$: one number for every pair of weights. Modern neural networks have billions of weights!

Model #3: mirror descent the thing we need to add

$$\mathcal{L}(W+\Delta W) = \mathcal{L}(W) + q^{T} \Delta W + q^{T} \Delta W + q^{T} \Delta W$$

Since we don't know the thing in the second box, mirror descent suggests modelling it as: $h(W + \Delta W) - (h(W) + \overline{V}_W h(W)^T \Delta W)$

where his a convex function that we are free to choose,

Gradient descent is a special case of minor descent

Take
$$h(w) = ||W||_F^2$$

$$h(W + \Delta W) - (h(W) + \overline{V}_{W} h(W)^{T} \Delta W)$$

$$= \left\| W + \Delta W \right\|_{F}^{2} - \left\| W \right\|_{F}^{2} - 2 W \Delta W$$
$$= \left\| \Delta W \right\|_{F}^{2} \qquad \text{Lipschitz Sansoftments} \\ \text{pleventy}$$

=>the mirror descent pencity with $h(w) = ||w||_F^2$ is equivalent to Lipschitz smoothness, which yields gradient 19 descent.

What's missing?

- techniques that involve computing a Hessian don't scale to modern MNS.

- there is something "non-convex" about NNs, but minnos descent models the loss (locally) as convex

- the techniques are generic - they do not exploit knowledge of the neural network architecture.

Agenda for today

- 1. State of deep learning
- 2. Optimisation theory
- 3. Perturbation theory approach

attempt to develop an optimisation theory that makes explicit use of the neural network structure.

NN perturbations bounds

To zeroth order, a neural net is a product of Scalars

$$f(x; \underline{a}) = (\prod_{i} \alpha_{i}) \times \begin{cases} both the network output \\ and its gradient take \\ \forall \alpha_{i} = (\prod_{i \neq j} \alpha_{i}) \times \end{cases}$$

We showed in lecture 7 that expressions of this form obey the perpertuation result

$$\frac{f(x_i a + Aa) - f(x_i a)}{f(x_i a)} = \prod_i \left(1 + \frac{Aa_i}{a_i} \right) - 1$$

Trust in a Taylor expansion
We are interested in the regin of variable of

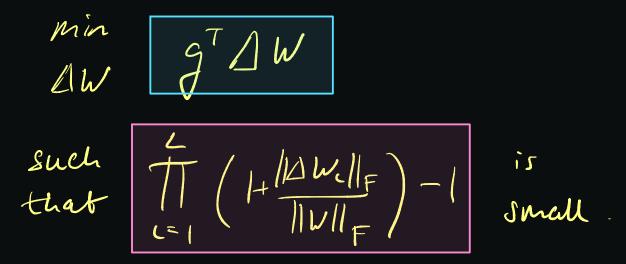
$$\mathcal{L}(W + \Delta W) = \mathcal{L}(W) + g^{T} \Delta W$$

That is, how large can we make ΔW before the gradient
 $\nabla W \mathcal{L}(W + \Delta W)$ increases substantial velative change?
For neural nets, ow perturbation results suggest the
following model:
 $\|\nabla W \mathcal{L}(W + \Delta W) - \nabla_W \mathcal{L}(W)\|_F \leq \prod_{c=1}^{\infty} (1 + \frac{\|\Delta W_{c}\|_F}{\|W_{c}\|_F}) - 1$
 $\|\nabla W \mathcal{L}(W)\|_F$

In words: the velative change in gradient is bounded by the product of the velative change in weights at each layer. 23

Small relative updates

This suggests an optimisation algorithm that closs



That is, make updates that are aligned with the negative gradient, but that are small in relative terms per layer.

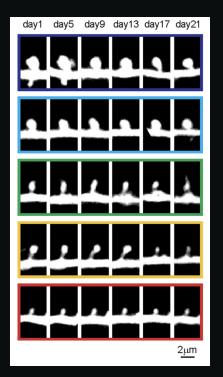
Per synapse relative updates

If we do small relative updates per synapse instead of per layer we get a multiplicative neight update.

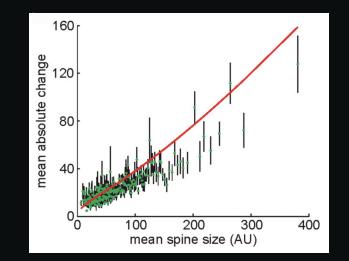
Multiplicative Dynamics Underlie the Emergence of the Log-Normal Distribution of Spine Sizes in the Neocortex *In Vivo*

Yonatan Loewenstein,¹ Annerose Kuras,^{2†} and Simon Rumpel²

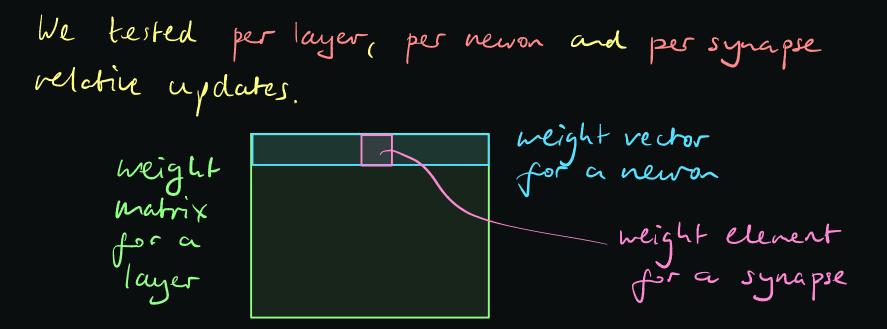
¹Department of Neurobiology, Edmond and Lily Safra Center for Brain Sciences, Interdisciplinary Center for Neural Computation and Center for the Study of Rationality, Hebrew University, Jerusalem 91904, Israel, and ²IMP—Research Institute of Molecular Pathology, Vienna 1030, Austria



This has been observed in neuroscience!

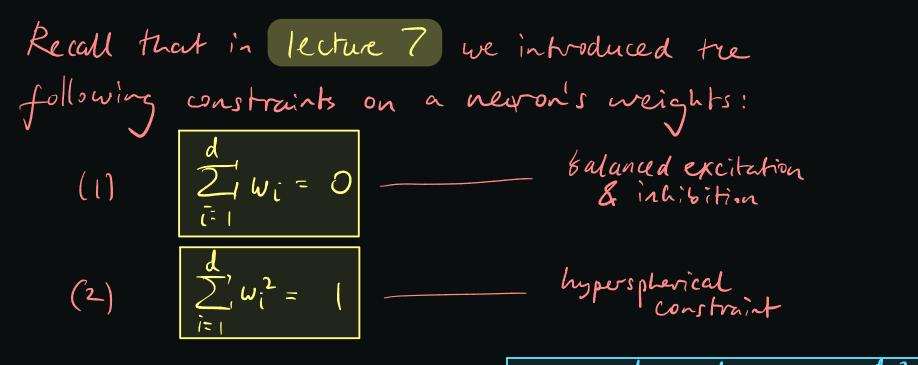


Per neuron relative updates



We found that small relative updates per neuron worked best.

Architectural constraints



Formally, the optimisation domain is $\mathcal{N} = \mathcal{S}^{d-2} \times \mathcal{S}^{d-2} \times \mathcal{S}^{d-2}$ — one hypersphere per neuron in the network.

What does small relative charge look like under these constraints?

Nero: <u>ne</u>uronal <u>ro</u>tator

We tested this algorithm (with a couple of extra tricks) and found that it worked across many deep learning problems with the same "learning rate" of 1/2 a degree of rotation per neuron per iteration 29

Summary

- optimisation theory requires a model of how the first order Taylor expansion breaks down
- · populer nodels (like mirror descent) are not well suited to neural nets
- · by directly studying the perturbation properties of neural nets, we can design optimisers that require less tuning.

Next lecture

We'll start GENERALISATION THEORY by looking at VC theory.

