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1. State of deep learning
2. Optimisation theory
3. Perturbation theory approach

✓
what is the Adam

optimism ?

different models of trust
✓ in Taylor expansions

(
an optimisation model based on the

neural network structure .

(my research, so be critical ! )



1. Empirical exploration
2. Modelling
3. Derivation
4. Empirical validation

many
(most ? ) ideas that work

well in deep learning
nnnnrvnrnrnnrnnrnnxrrrmrwnnrnnrw

(In my opinion) deep learning optimisation theory is

still at the modelling stage .
- designing theoretically principled deep learning optimised
requires building faithful yet analytically tractable
models of neural network loss functions .



This is where many treatments of deep learning begin .

loss function L (w ) = ¥! like loss on datapoint i

full gradient ÑwL(w ) = Éivwlilw) = : g (shorthand)
c-=L

stochastic gradient Iivwlilw) = : § (shorthand)
"

{
random "mini batch

"

of data points
stochastic gradient descent perturbs parameters via

w→ w -25
where y is the learning rate . It makes sense

, BUT. . .



Other optimisers are often substantially 
better than SGD... 
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training a transformer network on a machine
(

yn.mg ,am,, ya,µ
.

SGD is unstable and Adam works much better .



R
prop → Rms

prop
→ Adam

-
1993

from
Hinton's

2012
Coursera { -class

-

2015



i. e. not stochastic

" "

Hinton : Rprop is used for
_learning

can we trust

gradient W = - q g
~ the scale ofdescent

global
✓ g to be

useful ?learning rate
-

y , sign (g)

R prop
AW =

-

sign (ga)

÷
.

Yd sign ( ga
)

Rpvop takes the componentwise gradient sign, so it throws away
scale information from the gradient.
It also has per component learning rates , with a rule for adapting
them over time - but that's not important here .



RMSprop adapts Rpnop to work in the mini batch setting .

Imagine a case where a weight receives 10 gradients of
+ 0^1 followed bag 1 gradient of -1.0 .

The average gradient is 10×0 . I + I ✗ C- 1) = 0 so we don't want

the weight to move, but R prop would move the weight a lot .

RMSprop removes the overall gradient scale while retaining
relative scale information between successive stochastic gradients

5
RMS prop AW = - q

Rmg-(g, (
all operations

componentmite )
RMS(57 denotes the root mean square gradient over iterations :

RMSCJI : --ftp.gi-p-g#-p.-gI-...YpeC9D



Adam says , why only smooth the divisor with an

exponential moving average?

5
RMS prop AW = - y

Rmg-(g, (
all operations

componentwise )

Adam AW = - q ÉmM§¥g, (all operationscomponentwise )
"

where EMA means exponential moving average
"

:

EMA ( g- I = ( 1- B) [ gt-pgt.it P'get . . . ] petal)

Adam also has a trick for
"

warming up
"

the moving average
at the start , but that's not important here.



Hinton in 2012 :

"
we really don't have

nice clear cut advice for
how to

train a neural net
. - - . . .
think how

much better neural nets will work

once we've got this sorted out ?

" """""" {list of optimism
proposed since then .



1. State of deep learning
2. Optimisation theory
3. Perturbation theory approach

optimisation theory✓
"

Ya%%
say?



I computed the full batch gradient g : = Tw LCW)

of my loss function ✗ (w) , and it looks tile this :

option # I✗

MY
£14 ^ '

;

µ
:- option #2

A '

i.
.tw→

When I choose my step size , I need to know
,
does

✗ (w ) behave like option # 1 or option # 2 ?

how fast does the gradient change ?sameÑÉsh:{ how far can I trust the first order Taylor expansion?



First order Taylor expansion Higher order terms

Llw + Aw) = Llwl + g-
' AW + I AWTHAW + . . .

/gradient
g-

= Ñwdlwl
Hessian

Hij : =
0¥

owiowj
When picking the step site, we want to know how large
we can set AW before the higher order terms start
to dominate the first order Taylor expansion .

Optimisation theory
- let's model the higherorder terms .



First order Taylor expansion quadratic penalty
Llw + Aw) ⇐ Llwl + JAW + E ✗ KAWHI

Lipschitz smoothness models the higher order terms
as being bounded by a quadratic term in DW

.

L is a constant which adjusts the strength of thepenalty .

Let's compute the W that minimises this model
.

Differentiating with respect to AW :

this is gradient descent withg + LAW =

Ofstep size I
⇒ AW = - Eg - the steeper the penalty ,

the smaller the stepsize .



Lipschitz smooth model : ✗(w+AW) ELCWI + g-
' AW + ⇐ HAWKE

Our algorithm is gradient descent win step size Yc :

Wan = Wh - E g~gu==TwL(Wh )
⇒ The change in loss in one step is bounded like :

2

Hwan ) - LIYE - E Hg¥ + { ✗ ENGLE = -1<11gaff
↳ in words : when the gradient is large, the less will decrease a lot .

Now
, assuming the boss is nonnegative , the total possible improvement is

bounded
, meaning the algorithm must find a point with small gradient:

Llwn ) -Kwan ) ? YallgallEAwol ILIUM -HWA =

a-0
= =

total possible improvement from
improvement step 0 to step K step k to step let I

⇒ convergence ¥É¥ygy; ← z¥w ,
in words : lie anenge
gradient norm overrate iterations decays -YK .



Lipschitz smooth model : ✗(w+AW) ELCWI + g-
' AW + ⇐ HAWKE

Now let's consider stochastic gradient descent
NOISE MODEL :

Wan = Wa - E g-no
-Eigil = gie
killg-u -yall;] £ or

⇒ The change in loss i- one step is bounded like :

LlWant - Llwal E - { gÉgµ + E E 11g-all,? = llgnlitllgi-gall;

⇒ The expected improvement in one step is son in ,

+ 29%9=-94

E-www.l-hlwullwifs-tllga/lI+tdlguHi+Eit--IfHga11E+o-)
F- tdlwn.nl - Hwa] e- If E- llgnlhi + E)

Then the total possible improvement (for a nonnegative loss) satisfies :
✗ (Wo) 7- Awol - ELCWK ) = ETLCWN-Llwn.nl ] > É :-< (Ellgate -07

k= o
-

k- I

⇒ convergence E z.io/1gay,=ifg2-LwI+oz → gradient converges to
a noise ball of radius or

'

.

rate K Learning rate decay
would overcome this .



Lipschitz smoothness model ÷
First order Taylor expansion quadratic penalty

Llw + Aw) ⇐ Llwl + JAW + { ✗ HAWKE

Cubic regularisatin model :
second order Taylor expansion cubic perjury

✗(w + Aw ) £ LIWI + g-
'AW + AÑHAW + § HAWKE

PRO : it's a better model of twice differentiable functions
02

GON : it requires knowing Hij = gwigwj :
one number for every pair

of weights . Modern neural networks have billions of weights !



the thing we need to add

first order Taylor
to make this an identity .

LCWTAW) = LCW ) + JAW + LIW+AW) - Lcwl + jaw

since we don't know the thing in the second box
,
mirror

descent suggests modelling it as :

hlw+Aw ) - (h ( w) + Twh (WFAW)
where he is a convex function that we are free to choose

.

PRO : convex functions are easy to deal with
PRO : we get to choose h to model our loss function ✗
CON : there may be no good convex model of L

We will see on Hw4 why this is called
"
minor

" descent .



Of minor descent

Take hlwl = KWAI

Then hlw+Aw ) - (h ( w) + ywh(wjaw)
mirror descent

penalty

= 11W-11141¥ - 1141
,
? - 2 WTAW

= // AW/11=2 Lipschitz smoothness

penalty

⇒the mirror descent penalty with him = KWAI is

equivalent to Lipschitz smoothness, whichyields gradientdescent.



- techniques that involve computing a Hessian don't
scale to modern NNS .

- there is something
"
non-convex

"

about NNS , but mirror

descent models the loss (locally ) as convex

- the techniques are generic - they do not exploit
knowledge of the neural network architecture .



1. State of deep learning
2. Optimisation theory
3. Perturbation theory approach

(
attempt to develop an optimisation
theorythat makes explicit use of
the neural network structure

.



To zeroth order
,
a neural net is a product of

scalars

flnia )
=

ai / se

{ both the network outputand its gradient takeIf
= (IT a;) se the form of productsoaj itj

We showed in lecture 7 that expressions of this form
obey the perturbation result

ftei a-+As ) - g- trial
fG

← IT /1+%÷ ) - li



We are interested in the region of validity of
LIW + Aw ) = Llw ) + JAW

That is
,
how large can we make AW before the gradient

TWLCW+ Aw) incurs substantial relative change ?
For neural nets

,
our perturbation results suggest the

following model :
<←

product over layers

☒whew+ Aw) - TWHWNF £1T( 1+11%114;) - IHTWLCWIHF ⇐ 1

In words : the relative change in gradient is bounded by the
product of the relative change in weights at each layer.



This suggests an optimisation algorithm that does

min

W GTA W

such

tear
IT ( 1+11,4-1;) -1

is

small
.

5- 1

That is
, make updates that are aligned with the

negative gradient, but that are small in relative
terms per layer .



If we do small relative updates per synapse instead

of per layer we get a multiplicative weight update .

Each iteration
,
a synapse either :

• grows by a factor HE

• shrinks by a factor I - E



                           

This has been observed
in neuroscience !

⇐→•



We tested per layer, per neuron and per synapse
relative updates .

weight vector
weight neuron

matrix

for a weight element
layer for a synapse

we found that small relative updates per neuron
worked best

.



Recall that in lecture 7 we introduced the

following constraints on a neuron's weights :

d
balanced excitation

(1) Ii Wi = 0- & inhibition

÷
(2) Iwi = I - hyperspherical

constraint
F- I

Formally , the optimisation domain is D= Sd
- '

✗ 5.
d-'

✗
. .
. ✗

d-2

- one hypersphere per neuron in the network .

What does small relative change look like under these constraints ?



The hyperspherical constraint says that for each neuron
,

the weight vector is co-strained to the unit hypersphere :
9W
,

9W
,

①
" "" """" ""%

"

gw
,

is just rotation by a
>
W ,

small angle .

We tested this algorithm (with a couple of extra tricks ) and
found that it worked across many deep learning problems
with the same

"

learning rate of

¥ a degree of rotation per neuron per
iteration



• optimisation theory requires a model of how the first
order Taylor expansion breaks down

• popular models ( like mirror descent ) are not well suited
to neural nets

• by directly studying the perturbation properties of neural
nets
,
we can design optimism that require less tuning .



We'll start GENERALISATION THEORY

by looking at VC theory .




