
Jeremy Bernstein
bernstein@caltech.edu

1. State of deep learning
2. Optimisation theory
3. Perturbation theory approach

✓
what is the Adam

optimism ?

different models of trust
✓ in Taylor expansions

(
an optimisation model based on the

neural network structure .

(my research, so be critical !)

1. Empirical exploration
2. Modelling
3. Derivation
4. Empirical validation

many
(most ?) ideas that work

well in deep learning
nnnnrvnrnrnnrnnrnnxrrrmrwnnrnnrw

(In my opinion) deep learning optimisation theory is

still at the modelling stage .
- designing theoretically principled deep learning optimised
requires building faithful yet analytically tractable
models of neural network loss functions .

This is where many treatments of deep learning begin .

loss function L (w) = ¥! like loss on datapoint i

full gradient ÑwL(w) = Éivwlilw) = : g (shorthand)
c-=L

stochastic gradient Iivwlilw) = : § (shorthand)
"

{
random "mini batch

"

of data points
stochastic gradient descent perturbs parameters via

w→ w -25
where y is the learning rate . It makes sense

, BUT. . .

Other optimisers are often substantially
better than SGD...

& n -

☒µñ

training a transformer network on a machine
(

yn.mg ,am,, ya,µ
.

SGD is unstable and Adam works much better .

R
prop → Rms

prop
→ Adam

-
1993

from
Hinton's

2012
Coursera { -class

-

2015

i. e. not stochastic

" "

Hinton : Rprop is used for
_learning

can we trust

gradient W = - q g
~ the scale ofdescent

global
✓ g to be

useful ?learning rate
-

y , sign (g)

R prop
AW =

-

sign (ga)

÷
.

Yd sign (ga
)

Rpvop takes the componentwise gradient sign, so it throws away
scale information from the gradient.
It also has per component learning rates , with a rule for adapting
them over time - but that's not important here .

RMSprop adapts Rpnop to work in the mini batch setting .

Imagine a case where a weight receives 10 gradients of
+ 0^1 followed bag 1 gradient of -1.0 .

The average gradient is 10×0 . I + I ✗ C- 1) = 0 so we don't want

the weight to move, but R prop would move the weight a lot .

RMSprop removes the overall gradient scale while retaining
relative scale information between successive stochastic gradients

5
RMS prop AW = - q

Rmg-(g, (
all operations

componentmite)
RMS(57 denotes the root mean square gradient over iterations :

RMSCJI : --ftp.gi-p-g#-p.-gI-...YpeC9D

Adam says , why only smooth the divisor with an

exponential moving average?

5
RMS prop AW = - y

Rmg-(g, (
all operations

componentwise)

Adam AW = - q ÉmM§¥g, (all operationscomponentwise)
"

where EMA means exponential moving average
"

:

EMA (g- I = (1- B) [gt-pgt.it P'get . . .] petal)

Adam also has a trick for
"

warming up
"

the moving average
at the start , but that's not important here.

Hinton in 2012 :

"
we really don't have

nice clear cut advice for
how to

train a neural net
. - - . . .
think how

much better neural nets will work

once we've got this sorted out ?

" """""" {list of optimism
proposed since then .

1. State of deep learning
2. Optimisation theory
3. Perturbation theory approach

optimisation theory✓
"

Ya%%
say?

I computed the full batch gradient g : = Tw LCW)

of my loss function ✗ (w) , and it looks tile this :

option # I✗

MY
£14 ^ '

;

µ
:- option #2

A '

i.
.tw→

When I choose my step size , I need to know
,
does

✗ (w) behave like option # 1 or option # 2 ?

how fast does the gradient change ?sameÑÉsh:{ how far can I trust the first order Taylor expansion?

First order Taylor expansion Higher order terms

Llw + Aw) = Llwl + g-
' AW + I AWTHAW + . . .

/gradient
g-

= Ñwdlwl
Hessian

Hij : =
0¥

owiowj
When picking the step site, we want to know how large
we can set AW before the higher order terms start
to dominate the first order Taylor expansion .

Optimisation theory
- let's model the higherorder terms .

First order Taylor expansion quadratic penalty
Llw + Aw) ⇐ Llwl + JAW + E ✗ KAWHI

Lipschitz smoothness models the higher order terms
as being bounded by a quadratic term in DW

.

L is a constant which adjusts the strength of thepenalty .

Let's compute the W that minimises this model
.

Differentiating with respect to AW :

this is gradient descent withg + LAW =

Ofstep size I
⇒ AW = - Eg - the steeper the penalty ,

the smaller the stepsize .

Lipschitz smooth model : ✗(w+AW) ELCWI + g-
' AW + ⇐ HAWKE

Our algorithm is gradient descent win step size Yc :

Wan = Wh - E g~gu==TwL(Wh)
⇒ The change in loss in one step is bounded like :

2

Hwan) - LIYE - E Hg¥ + { ✗ ENGLE = -1<11gaff
↳ in words : when the gradient is large, the less will decrease a lot .

Now
, assuming the boss is nonnegative , the total possible improvement is

bounded
, meaning the algorithm must find a point with small gradient:

Llwn) -Kwan) ? YallgallEAwol ILIUM -HWA =

a-0
= =

total possible improvement from
improvement step 0 to step K step k to step let I

⇒ convergence ¥É¥ygy; ← z¥w ,
in words : lie anenge
gradient norm overrate iterations decays -YK .

Lipschitz smooth model : ✗(w+AW) ELCWI + g-
' AW + ⇐ HAWKE

Now let's consider stochastic gradient descent
NOISE MODEL :

Wan = Wa - E g-no
-Eigil = gie
killg-u -yall;] £ or

⇒ The change in loss i- one step is bounded like :

LlWant - Llwal E - { gÉgµ + E E 11g-all,? = llgnlitllgi-gall;

⇒ The expected improvement in one step is son in ,

+ 29%9=-94

E-www.l-hlwullwifs-tllga/lI+tdlguHi+Eit--IfHga11E+o-)
F- tdlwn.nl - Hwa] e- If E- llgnlhi + E)

Then the total possible improvement (for a nonnegative loss) satisfies :
✗ (Wo) 7- Awol - ELCWK) = ETLCWN-Llwn.nl] > É :-< (Ellgate -07

k= o
-

k- I

⇒ convergence E z.io/1gay,=ifg2-LwI+oz → gradient converges to
a noise ball of radius or

'

.

rate K Learning rate decay
would overcome this .

Lipschitz smoothness model ÷
First order Taylor expansion quadratic penalty

Llw + Aw) ⇐ Llwl + JAW + { ✗ HAWKE

Cubic regularisatin model :
second order Taylor expansion cubic perjury

✗(w + Aw) £ LIWI + g-
'AW + AÑHAW + § HAWKE

PRO : it's a better model of twice differentiable functions
02

GON : it requires knowing Hij = gwigwj :
one number for every pair

of weights . Modern neural networks have billions of weights !

the thing we need to add

first order Taylor
to make this an identity .

LCWTAW) = LCW) + JAW + LIW+AW) - Lcwl + jaw

since we don't know the thing in the second box
,
mirror

descent suggests modelling it as :

hlw+Aw) - (h (w) + Twh (WFAW)
where he is a convex function that we are free to choose

.

PRO : convex functions are easy to deal with
PRO : we get to choose h to model our loss function ✗
CON : there may be no good convex model of L

We will see on Hw4 why this is called
"
minor

" descent .

Of minor descent

Take hlwl = KWAI

Then hlw+Aw) - (h (w) + ywh(wjaw)
mirror descent

penalty

= 11W-11141¥ - 1141
,
? - 2 WTAW

= // AW/11=2 Lipschitz smoothness

penalty

⇒the mirror descent penalty with him = KWAI is

equivalent to Lipschitz smoothness, whichyields gradientdescent.

- techniques that involve computing a Hessian don't
scale to modern NNS .

- there is something
"
non-convex

"

about NNS , but mirror

descent models the loss (locally) as convex

- the techniques are generic - they do not exploit
knowledge of the neural network architecture .

1. State of deep learning
2. Optimisation theory
3. Perturbation theory approach

(
attempt to develop an optimisation
theorythat makes explicit use of
the neural network structure

.

To zeroth order
,
a neural net is a product of

scalars

flnia)
=

ai / se

{ both the network outputand its gradient takeIf
= (IT a;) se the form of productsoaj itj

We showed in lecture 7 that expressions of this form
obey the perturbation result

ftei a-+As) - g- trial
fG

← IT /1+%÷) - li

We are interested in the region of validity of
LIW + Aw) = Llw) + JAW

That is
,
how large can we make AW before the gradient

TWLCW+ Aw) incurs substantial relative change ?
For neural nets

,
our perturbation results suggest the

following model :
<←

product over layers

☒whew+ Aw) - TWHWNF £1T(1+11%114;) - IHTWLCWIHF ⇐ 1

In words : the relative change in gradient is bounded by the
product of the relative change in weights at each layer.

This suggests an optimisation algorithm that does

min

W GTA W

such

tear
IT (1+11,4-1;) -1

is

small
.

5- 1

That is
, make updates that are aligned with the

negative gradient, but that are small in relative
terms per layer .

If we do small relative updates per synapse instead

of per layer we get a multiplicative weight update .

Each iteration
,
a synapse either :

• grows by a factor HE

• shrinks by a factor I - E

This has been observed
in neuroscience !

⇐→•

We tested per layer, per neuron and per synapse
relative updates .

weight vector
weight neuron

matrix

for a weight element
layer for a synapse

we found that small relative updates per neuron
worked best

.

Recall that in lecture 7 we introduced the

following constraints on a neuron's weights :

d
balanced excitation

(1) Ii Wi = 0- & inhibition

÷
(2) Iwi = I - hyperspherical

constraint
F- I

Formally , the optimisation domain is D= Sd
- '

✗ 5.
d-'

✗
. .
. ✗

d-2

- one hypersphere per neuron in the network .

What does small relative change look like under these constraints ?

The hyperspherical constraint says that for each neuron
,

the weight vector is co-strained to the unit hypersphere :
9W
,

9W
,

①
" "" """" ""%

"

gw
,

is just rotation by a
>
W ,

small angle .

We tested this algorithm (with a couple of extra tricks) and
found that it worked across many deep learning problems
with the same

"

learning rate of

¥ a degree of rotation per neuron per
iteration

• optimisation theory requires a model of how the first
order Taylor expansion breaks down

• popular models (like mirror descent) are not well suited
to neural nets

• by directly studying the perturbation properties of neural
nets
,
we can design optimism that require less tuning .

We'll start GENERALISATION THEORY

by looking at VC theory .

